期刊文献+

基于Delaunay三角网的图像匹配算法 被引量:6

Image matching algorithm based on Delaunay triangulation and projective invariant
下载PDF
导出
摘要 本文提出一种基于Delaunay三角剖分和摄影几何中的射影不变量的一种相机图像匹配算法。本算法首先利用三角形相似函数计算待匹配图像的Delaunay三角形网中三角形之间的相似度,进行粗匹配,然后利用射影不变量删除粗匹配结果中的误匹配,进行精匹配。对实际图像的实验表明本文的算法具有良好的匹配性能,可以对部分物体运动的图像进行匹配。 This paper proposed a new image matching method based on Delaunay triangulation and projective invariant in projective geometry .This new method firstly used triangulation function to compute the triangulation similarity of the triangulation in the matching images Delaunay triangulation ,then used the triangulation to execute rough matching. Secondly used projective invariant to remove the error matching in the result of rough matching And we realize this matching algorithm could match the photo images with part object moved. Experiments on real images demonstrate the good performance of this method.
作者 李山奎 张平
出处 《微计算机信息》 2009年第28期115-117,共3页 Control & Automation
关键词 图像匹配 DELAUNAY三角网 射影不变量 Image matching Delaunay triangulation Projective invariant
  • 相关文献

参考文献7

  • 1张正友,DericheR. A Robust Technique for Matching Two Uncalibrated Image Through the Recovery of the Unknown Epipolar Geometry[J]. Artificial Intelligence. 1995,78(1-2):87-119.
  • 2Toru Wakahara,Kazumi Odaka Adaptive Normalization of Handwritten Characters Using Global/Local Affine Transformation [C]. IEEE Trans.PAMI, 1998,20(12):1332-1341.
  • 3Pan Jun-Jun, Zhang Yan-ning. Corresponding Points Matching Based on Position Similarity[C]. IEEE Proceedings of the Computer Graphics. Imaging and Vision: New Trends 2005:5154-5158.
  • 4牛刚,梁伟.基于特征像素统计的图像相关匹配算法[J].微计算机信息,2005,21(11X):103-104. 被引量:17
  • 5CHarris ,M.AStephens.A combined corner and edge detector[C]. Aley Vision Conference. 1988:147-152.
  • 6V.J.D.Tsai. Delaunay triangulations in TIN creation:an overview and a linear-time algorithm[J]. Int.J.of.GIS,1993,7(6):510-524.
  • 7李赣华,周东祥,董黎,刘云辉,蔡宣平.基于Delaunay三角化的有效角点匹配算法[J].信号处理,2007,23(5):695-698. 被引量:6

二级参考文献27

  • 1WilliamK Pratt著 邓鲁华 张延恒译.《数字图象处理》第三版[M].机械工业出版社,2005..
  • 2J. Martin and J. L. Crowley, Comparison of correlation techniques ,In Intelligent Autonomous Systems ,pp. 86-93,1995.
  • 3L. S. Shapiro, H. Wang and J. M. Brady, A matching and tracking strategy for independently-moving, non-rigid objects,In Proc. 3rd British Machine Vision Conference,pp. 306-315, Springer Verlag, Sep. 1992.
  • 4X. Hu and N. Ahuja,Matching Point Features with Ordered Geometric,Rigidity, and Disparity Constraints,PAMI,vol. 16,no. 10,pp. 1041-1049, i994.
  • 5R. Deriche, Z. Zhang, Q.-T. Luong and O. Faugeras, Robust Recovery of the Epipolar Geometry for an Uncalibrated Stereo Rig,ECCV ,pp. 567-576,1994.
  • 6Z. Zhang, R. Deriche, O. Faugeras and Q. -T. Luong, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry, Technical Report 2273 ,INRIA,May 1994.
  • 7P. Long Limozin and G Giraudon, Stereo matching based on contextual line-region primitives, In Proceedings of the 8th International Conference on Pattern Recognition, Paris, France, pp. 974-977,1986.
  • 8R. Horaud and T. Skordas, Stereo correspondence through feature grouping and maximal cliques, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 ( 11 ) : 1168-1180,1989.
  • 9B. B. Hansen and B. S. Morse, Muhiscale image registration using scale trace correlation,In CVPR,pp. 202-205,1999.
  • 10X. Hu and N. Ahuja, Feature extraction and matching as signal detection International Journal of Pattern Recognition and Artificial Intelligence, 8 (6) : 1343-1379,1994.

共引文献21

同被引文献51

  • 1王慧,吴云东,张永生.分通道影像配准误差分析[J].测绘科学技术学报,2006,23(4):258-260. 被引量:4
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3Schaffalitzky F,Zisserman A.Multi-view Matching for Unordered Image Sets[C]//European Conference on Computer Vision,2002:414-431.
  • 4Tuytelaars T,Van G L.Matching Widely Separated Views based on Affine Invariant Regions[J].European Conference on Computer Vision,2004,59(1):61-85.
  • 5Lowe D G.Object Recognition from Local Scale-Invariant Features[C]//International Conference on Computer Vision,1999:1150-1157.
  • 6Lowe D G.Distinctive Image Features from Scale Invariant Key-points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 7Bay H,Tuvtellars T,Luc V G.SURF:Speeded Up Robust Feature[C]//European Conference on Computer Vision,2006:404-417.
  • 8Yoon H,Chung H,Hahn H.SURF Algorithm with Color and Global Characteristics[C]//ICCAS-SICE International Joint Conference,2009:183-187.
  • 9Geusebroek J M,van den Boomgaard R,Smeulders A W M,et al.Color Invariance[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(12):1338-1350.
  • 10靳建立,范永弘,纪松.基于面特征的整体影像匹配方法[J].测绘通报,2008(9):13-15. 被引量:3

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部