摘要
用初等方法完全解决了数论函数方程SL(nk)=(n)(k=1,2,3,…)的正整数解问题,即SL(nk)=(n)(k=1,2,3,…)有解当且仅当n=1。
In this paper,the Arithmetical Function equation SL(n^k) =φ(n) (k = 1,2,3,…) is completely solved with the primary method on the positive integer solution of the problem,which is that the eqution SL( n^k) =φ(n) (k = 1,2,3… ) exists positive integer solution if and only if n = 1
出处
《科学技术与工程》
2009年第20期6127-6128,共2页
Science Technology and Engineering
关键词
同余
欧拉函数
函数方程
正整数解
congruence Euler function function equation positive integer solution