期刊文献+

基于分水岭算法的绿色作物与背景分割研究 被引量:1

Study on the Segmentation of Green Crops from Background Based on Morphological Watershed Algorithm
下载PDF
导出
摘要 分水岭算法作为彩色图像分割手段的一种方法,具有运算简单,性能优良,能较好提取运动对象轮廓和准确得到运动物体边缘等优点。应用分水岭算法研究了绿色作物及其背景的分割,首先通过数码相机拍摄的一幅640×480田间青菜真彩色图像,在matlab中采用分水岭分割算法处理图像后提取其绿色分量,再用数学形态学闭运算处理后可以较好地分割绿色作物与背景。针对结果中存在的过分割现象,采用先计算图像的形态学梯度,再用分水岭算法分割可以使结果得到有效改善。 As a algorithm of true color image segmentation ,watershed segmentation has less computation, better performance, which can also obtain profile and edge of mobile object . The algorithm was used for segmentation green corps from background for its performance. At first, a true-color greengrocery image of 640 pixels width and 480 pixels height obtained by digital camera, which was processed by morphological watershed in the software of madab. The greengrocery and background was segmented by extracting its green vector, then processing by morphological closing. Direct application of the watershed segmentation algorithm to process image generally led to the over-segmentation phenomenon. The results could be effectively improved by computing morphological gradient of the image then using morphological watershed.
出处 《安徽农业科学》 CAS 北大核心 2009年第29期14483-14484,共2页 Journal of Anhui Agricultural Sciences
基金 教育部重点科研项目(03091) 江西省教育厅项目(GJJ-08177)
关键词 分水岭算法 绿色作物 图像分割 Watershed algorithm Green crops Image segmentation
  • 相关文献

参考文献10

二级参考文献16

  • 1Ma Lihong Yu Yinglin(Dept. of Electron. Eng. and Comm., South China Univ. of Tech. Guangzhou, 510641)Zhang Yu(Research Inst. of Computer Application, South China Univ. of Tech. Guangzhou, 510641).A SKELETONIZATION ALGORITHM BASED ON EUCLIDEAN DISTANCE MAPS AND MORPHOLOGICAL OPERATORS[J].Journal of Electronics(China),2001,18(3):272-276. 被引量:3
  • 2.MATLAB 6.0高级应用-图形图像处理[M].机械工业出版社,2001,5.1.
  • 3.MATLAB 6.0高级应用-图形图像处理[M].机械工业出版社,2001.5.1.
  • 4H Digabel,C Lantuejoul. Iterative algorithms[C].In:Proc of the 2nd European Symp on Quantitative Analysis of Microstructures in Material Science,Biology and Medicine,Caen,France,1977-10.
  • 5B T M Jos,Roerdink,M Arnold.The Watershed Transform: Definitions,Algorithms and Parallelization Strategies[J].Fundamenta Informaticae, 2001 ; 41 : 187-228.
  • 6S Y Chien,Y W Huang,L G Chen.Predictive Watershed:A Fast Watershed Algorithm for Video Segmentation[J].IEEE Transactions On Circuits and Systems for Video Technology,2003 ; 13,453-461.
  • 7L Vincent,P Soille.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Inteligence, 1991 ; 13:583-598.
  • 8W E Higgins,E J Ojard. 3D Images and Use of Markers and Other Topological Information to Reduce Oversegmentations[J].Computers in Medical Imageing and Graphics, 1993 ; 17:387-395.
  • 9G Wyszecki ,W S Stiles.Color Science: Concepts and Methods, Quantitative Data and Formulae[M].Second Ed,New York:Wiley,1982.
  • 10D Comaniciu,P Meer.Robust Analysis of Feature Spaces: Color Image Segmentation[C].In : Proceedings of CVPR'97, San Juan, Puerto Rico, 1997.

共引文献424

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部