期刊文献+

累加交叉并行级联单奇偶校验码的低复杂度译码算法

A Low Complexity Decoding Algorithm for Accumulated-Crossover Parallel-concatenated SPC Codes
下载PDF
导出
摘要 累加交叉并行级联单奇偶校验(A-CPSPC)码是一种新的纠错编码,其编码结构简单并具有较好的误比特率性能。该文针对A-CPSPC码的局部编码结构提出了一种低复杂度的最大后验(MAP)局部译码算法,该方法利用基于双向消息传递原则的和积算法(SPA)进行局部译码,消除了短环对局部译码性能的影响。分析及仿真表明,传统的置信传播算法并不适用于A-CPSPC码,该文提出的局部译码算法与基于BCJR算法的局部译码算法的性能一致,且复杂度更低。 Accumulated-Crossover Parallel-concatenated SPC (A-CPSPC) Codes, which have good bit error rate performance and simple encoding structure, is a class of novel error-correcting codes. A Maximum A Posteriori (MAP) algorithm based on the Sum-Product Algorithm (SPA), is proposed to solve the local decoding, and to eliminate the effect of short cycles. Analysis and simulation results show that the conventional Belief Propagation (BP) decoding algorithm is not suitable for A-CPSPC codes, and the proposed local decoding algorithm can achieve the same performance as the one based on the BCJR algorithm, but has much lower complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第9期2143-2147,共5页 Journal of Electronics & Information Technology
基金 国家863计划项目(2007AA01Z288) 高等学校创新引智计划(B08038)资助课题
关键词 低密度奇偶校验码 并行级联 单奇偶校验码 交叉器 最大后验译码 Low-Density Parity-Check(LDPC) codes Parallel concatenation SPC codes Crossover structure Maximum A Posteriori(MAP) decoding
  • 相关文献

参考文献11

  • 1Berrou C, Glavieux A, and Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. Proc. of IEEE International Conference on Communications. Geneva, Switzerland, 1993, 2: 1064-1070.
  • 2MacKay D J C and Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(6): 1645-1646.
  • 3Liva G, Song S, and Lan L, et al.. Design of LDPC codes: A survey and new results. Journal of Communications Software and Systems, 2006, 2(3): 191-211.
  • 4Tee J S K, Taylor D P, and Martin P A. Multiple serial and parallel concatenated single parity-check codes. IEEE Transactions on Communications, 2003, 51(10): 1666-1675.
  • 5Chen L, Xu J, and Djurdjevic I, et al.. Near-Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Transactions on Communications, 2004, 52(7): 1038-1042.
  • 6Lan L, Zeng L Q, and Tai Y Y, et al.. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field approach. IEEE Transactions on Information Theory, 2007, 53(7): 2429-2458.
  • 7Garcia-Frias J and Zhong W. Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix. IEEE Communications Letters, 2003, 7(6): 266-268.
  • 8Babich F and Comisso M. Channel coding and multi-antenna techniques for distributed wireless networks. Proc. of IEEE Global Telecommunications Conference, Washington, DC, USA, 2007: 4180-4184.
  • 9Gonz'alez-L'opez M, V'azquez-Ara'ujo F J, and Castedo L, et al.. Serially-concatenated low-density generator matrix (SCLDGM) codes for transmission over AWGN and Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2007, 6(8): 2753-2758.
  • 10Kim J S and Song H Y. Concatenated LDGM codes with single decoder. IEEE Communications Letters, 2006, 10(4): 287-289.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部