期刊文献+

克隆选择算法和ICM的图像自动分割方法研究 被引量:1

Research on Image Segmentation Algorithm Based on Clonal Selection Algorithm and ICM
下载PDF
导出
摘要 交叉皮层模型是一种简化的脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN),该模型保留了PCNN的脉冲耦合、发放同步脉冲、变阈值、产生脉冲波等重要特性,但调节参数比PCNN少,被认为具有比PCNN更加良好的图像处理能力。针对ICM模型图像分割效果取决于各个参数的优化调节,提出了一种克隆选择算法和ICM模型的图像自动分割算法。该算法的克隆选择算子以自适应方式调节,以最大信息熵作为亲和度函数,速度快,全局搜索效率高,实现了图像的自动分割。仿真表明,该算法有效可行。 The Intersecting Cortical Model (ICM) is a simplified model of Pulse--Coupled Neural Network (PCNN) model. It maintains important properties of pulse coupled, synchronize pulsing activity, vary threshold and production of pulse wave, and its adjustable parame ters is less. So it is considered to be better the ability of Image processing compared with PCNN, The effect of image segmentation based on ICM depends on optimal regulation of its adjustable parameters. Based on clonal selection algorithm and ICM, an algorithm of image auto- matic segmentation is proposed in this paper. The clone operator of this algorithm is adaptive regulation and its affinity is maximum information entropy. Its computation speed and search efficiency are very high. The Algorithm has realized image automatic segmentation. The simulation results show the algorithm is effective and feasible.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第9期1807-1809,共3页 Computer Measurement &Control
基金 国家自然科学基金(60575013) 航空科学基金(20070153005) 航空支撑科技基金(07C53007)
关键词 交叉皮层模型 脉冲耦合神经网络 图像分割 克隆选择算法 intersecting cortical mode (ICM) pulse coupled neural network (PCNN) image segmentation clonal selection algorithm
  • 相关文献

参考文献9

  • 1Eckhorn R, Reitboeck H J, stimulusevoked oscillations Arndt M, et al. Feature linking via experimental results from cat visual cortex and functional implications from a network model [A]. Proceedings of International Joint Conference on Neural Networks [C]. Washington D C, 1989: 723--730.
  • 2Ekblad U, Kinser J M. Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars and nuclear explosion tests[J]. Signal Processing, 2004, 84 (7): 1131--1146.
  • 3Ekblad U, Kinser J M, Atmer J, etal. The intersecting cortical model in image processing [J]. Nuclear Instruments&Methods in Physics Research= Section A, 2004, 525 (2): 392--396.
  • 4Lindblad T, Kinser J M. Image Processing Using Pulse--Coupled Neural Network [M]. BerlHeidelberg: Springer-- Verlag, 2005.
  • 5Zhaobin Wang, Yide Ma, Guangzhu Xu. A Novel Method of Iris Feature Extraction Based on the 1CM [A]. International Conference on Information Acquisition [C]. 2006: 814--818.
  • 6马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报,2006,18(3):722-725. 被引量:50
  • 7Eckhorn R, Reitbodck H J, Arndt M, Dicke P, et al. Feature linking vis synchronization among distributed assemblies: Simulations of results from cat visual cortex [J]. Neural Comp. , 1990, (2):293--307.
  • 8Rybak I A, Shevtsova N A, Sanaler V A. The model of a neural network visual processor [J]. Neurocomputiog, 1992, (4): 93--102.
  • 9左兴权,李士勇,李远贵.人工免疫系统研究的新进展[J].计算机测量与控制,2002,10(11):701-705. 被引量:20

二级参考文献12

  • 1Rechenberg I. Cybemetic solution path of an experimental problem[J]. Roy Airer Establ, libr trans 1222 Hants, UK;Tamborough,1985.
  • 2Schwefel H. P_Numerical optiization of computer model[M].Chichester; Wiley, 1981.
  • 3J L Johnson, M L Padgett. PCNN Models and Applications[J]. IEEE Trans. on Neural Networks(S 1045-9227), 1999, 10(3):480-498.
  • 4J M Kinser. Recent Research in Pulse-Coupled Neural Networks[J].SPIE Areosense conf. (S0277-786X), Orlan, FL, 1996.
  • 5G.Kuntimad, H. S. Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks[J]. IEEE Trans. Neural Networks(S 1045-9227), 1999,10(3):591-598.
  • 6H S Ranganath, G.Kuntimad. Iterative segmentation using Pulse Coupled Neural Networks[J]. SPIE (S0277-786X), 2760: 543-554.
  • 7Mary Lou Padgett, John L.Johnson. Pulse Coupled Neural Networks and Wavelet [J]. IEEE Trans on Neural Networks(S 1045-9227), 1997:2507-2512.
  • 8Xiao-Dong Gu, Shi-De Guo, Dao-Heng Yu. A new approach for image segmentation based on unit-linking PCNN[C]// Machine Learning and Cybernetics, Proceedings 2002 International Conference, 2002, 1: 175- 178. (会议名为:The First Intemat. Conf.of Machine learning and Cybernetics)
  • 9Kohler R A. Segmentation system based on thresholding[J].Computer vision, graphics and image processing(S0734-189X), 1981,15(6): 319-324.
  • 10马义德,戴若兰,李廉,吴承虎.一种基于脉冲耦合神经网络的植物胚性细胞图像分割[J].科学通报,2001,46(21):1781-1786. 被引量:11

共引文献68

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部