期刊文献+

基于DSP利用粒子滤波算法实现目标跟踪 被引量:11

Particle filter algorithm for target tracking based on DSP
原文传递
导出
摘要 以TMS320DM643数字信号处理器(DSP)为核心,构建了高性能的视频处理平台,并利用该硬件平台实现粒子滤波(PF)算法完成对目标的跟踪。介绍了视频处理平台的基本结构和核心器件,并阐述了DSP实现运动目标跟踪的软件设计。实验表明,该系统能够实时跟踪目标,且相对于传统的图像采集卡与计算机结合的处理系统,具有体积小、低功耗、模块化和移动性好的特点,容易集成到各种移动设备中实现自主导航、安防监控等功能。 A high-performance video processing platform is built on TMS320DM643 DSP, and target tracking is achieved based on particle filter. The basic structure and core devices of the video processing platform are introduced and the software design of object tracking is described. The experiments show that the system realizes real-time target tracking. Compared with the traditional processing system that combines image acquisition card with the computer, the system features compactness,low power,modularity and mobility. It also can be easily integrated into a variety of mobile devices to achieve autonomous navigation, security monitoring function, etc.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2009年第6期771-774,共4页 Journal of Optoelectronics·Laser
基金 国家"863"计划资助项目(2007AA04Z229) 国际科技合作资助项目(2006DFA12410)
关键词 粒子滤波(PF) 数字信号处理器(DSP) 目标跟踪 particle filter(PF) DSP object tracking
  • 相关文献

参考文献8

  • 1Crisan D,Doucet A. A survey of convergence results on particle filtering methods for practitioners[J]. IEEE Transactions on Signal Processing, 2002,50(2): 736-746.
  • 2Dcucet A,Godsil S,Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10 (3) :197-208.
  • 3Belviken E,Acklam P J. Monte Carlo filters for non-linear state estimation[J]. Automation,2001,37(1) : 177-183.
  • 4Fox D. Adapting the sample size in particle filters through KLD sampling[J]. The International Journal of Robotics Research, 2003,22 (12):985-1003.
  • 5Thrun S,Fox D,Burgard W,et al. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence,2001,128(1-2):99-141.
  • 6Kwok C,Fox D,Meil M. A real-time particle filters[J]. Proceedings of the IEEE, 2004,92(3): 469-484.
  • 7胡昭华,宋耀良,梁德群,樊鑫.复杂背景下多信息融合的粒子滤波跟踪算法[J].光电子.激光,2008,19(5):680-685. 被引量:14
  • 8刘贵喜,范春宇,高恩克.基于粒子滤波与多特征融合的视频目标跟踪[J].光电子.激光,2007,18(9):1108-1111. 被引量:12

二级参考文献24

  • 1张昊,黄战华,郁道银,蔡怀宇,刘正.二维图像序列中刚性目标的准确定位方法[J].光电子.激光,2005,16(1):102-104. 被引量:4
  • 2赵其杰,屠大维,高达明,王仁三,陈方泉.一种基于特征线条的虹膜跟踪实用方法[J].光电子.激光,2005,16(2):199-202. 被引量:3
  • 3王维雅,丁雪梅,黄向东,谭久彬,李海英.一种小目标快速识别与跟踪方法[J].光电子.激光,2007,18(1):121-124. 被引量:14
  • 4刘贵喜,范春宇,高恩克.基于粒子滤波与多特征融合的视频目标跟踪[J].光电子.激光,2007,18(9):1108-1111. 被引量:12
  • 5Gordon N J,Salmond D J,Smith A F M. Novel approach to nonlinear/ non-Gaussian bayesian state estimation[J]. IEE Proceedings Radar ond Signal Processing ,1993,140(2) : 107-113.
  • 6Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998,29 (1) :5-28.
  • 7Comaniciu D,Ramesh V,Meer P. Real-timie tracking of non-rigid objects using mean shift[A]. IEEE Conference on Computer Vision and Pattem Recognition, Hilton Head Islond , South Carolina[C]. 2000, 142-149.
  • 8Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Journal of Image ond Vision Computing, 2003,21 (1):99-110.
  • 9Perez P,Hue C,Vermaak J, et al. Color-based probabilistic tracking [A]. 7th European Conference on Computer Vision ( ECCV 2002) [C].2002,661-675.
  • 10Wu Y,Huang T S. A co-inference approach to robust visual tracking [A]. IEEE Conference on Computer Vision ond Pattem Recognition [C]. 2001,2:26-33.

共引文献23

同被引文献69

引证文献11

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部