期刊文献+

一种基于条纹中心线的InSAR干涉图滤波方法 被引量:3

InSAR Interferogram Filtering Based on the Center Lines of the Interference-stripes
下载PDF
导出
摘要 干涉条纹图噪声的滤除是InSAR数据处理的关键步骤之一。针对干涉条纹图的各向异性特征,提出一种基于条纹中心线的InSAR干涉图滤波算法,考虑到干涉条纹中心线获取的复杂性,此算法采用细胞神经网络快速提取干涉条纹图的条纹中心线。通过用真实的InSAR干涉图实验证明此方法具有很好的滤波效果,滤波结果视觉特征良好、残余点减少,保持了图像的边缘和细节特征,而且降低了为滤波效果所付出的时间代价。 Removing the noise of the interference-stripes images is one important step during the data processing of InSAR. Aimed at the anisotropic characteristic, a method for InSAR interferogram filtering method based on the center lines of the interference*stripes is proposed. Considering the difficulty to obtain the center lines of the stripes, the algorithm proposed in this paper extracts the center lines of interference-stripes quickly by using CNN (Cellular Neural Networks) algorithm for its parallel feature to process data. The experiment results with good visual feature, little residue and strong image edges and details holding ability show that this method is efficient, at the same time the cost of time spent for better effect is greatly decreased.
出处 《测绘学报》 EI CSCD 北大核心 2009年第3期210-215,共6页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(60874096 60872130) 教育部高校科技创新重大项目培育基金(706043) 湖南省教育厅科研项目(07C073 07B042)
关键词 INSAR 细胞神经网络 干涉条纹中心线 InSAR cellular neural networks interference-stripes center lines
  • 相关文献

参考文献12

  • 1ZEBKER H A, VILLASENOR J. Decorrelation in Inferometric Radar Echoes[J]. IEEE Trans Geoscience and Re mote Sensing, 1992, 30(5): 950- 959.
  • 2LEE J S, AINSWORTH T L, GRUNES M R, GOLD STEIN R M. Noise Filtering Interferometric SAR Images[C]//Proc SPIE European Symp Rome. Rome: [s. n. ], 1994,735- 742.
  • 3RODRIGUEZ E, MARTIN J M. Theory and Design of In terferometric Synthetic Aperture Radars[J]. IEE Proceedings F, 1992, 139 (2): 147- 159.
  • 4LEE J S, PAPATHANASSIOU K P,AINSWORTH T L, et al. A New Technique for Noise Filtering of SAR Inter fereometric Phase Images[J]. IEEE Trans Geosei Remote Ens, 1998, 36(5): 1456 -1465.
  • 5TROUVE E, NICOLAS J, MAITER H. Improving Phase Unwrapping Techniques by the Use of Local Frequency Es timates[J]. IEEE Trans Geosci Remote Sens, 1998, 36 (6) : 1963-1972.
  • 6WU N, FENG D Z, LI J X. A Locally Adaptive Filter of Interferometric Phase Images[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(1): 73- 77.
  • 7何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报,2006,35(2):128-132. 被引量:13
  • 8YU Q, YANG X, FU S, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters. 2007, 4(1): 23- 26.
  • 9王怀颖,于盛林,冯强.一种用细胞神经网络提取干涉条纹中心的新方法[J].计量学报,2006,27(2):117-120. 被引量:4
  • 10CHUA L O, YANG L. Cellular Neural Networks: Applications[J]. IEEE Trans on Circuits and Systems, 1988, 35: 1273-1290.

二级参考文献17

  • 1靳国旺 杜丽敏 徐青 蓝朝桢.InSAR干涉图的滤波处理[A]..现代通信理论与信号处理进展[C].北京:电子工业出版社,2003.551-558.
  • 2Chua L O,Yang L.Cellular Neural Networks:Theory[J].IEEE Trans on Circuits and Systems,1988,35:1257 ~1272.
  • 3Chua L O,Yang L.Cellular Neural Networks:Applications[J].IEEE Trans on Circuits and Systems,1988,35:1273~ 1290.
  • 4Blayvas I,Bruckstein A,Kimmel R.Efficient computation of adaptive threshold surfaces for image binarization[A].Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],CVPR 2001,2001,Vol.1:737 ~ 742.
  • 5Liju Dong,Ge Yu.An optimization-based approach to image binarization[A].The Fourth International Conference on Computer and Information Technology[C],CIT ' 04,2004,165 ~170.
  • 6YuD,Ho C,Yu X,Mori S.On the application of cellular automata to image thinning with cellular neural network[A].Second International Workshop on Cellular Neural Networks and Their Applications[C],Proceedings CNNA-92,1992,210 ~ 215.
  • 7Matsumoto T,Chua L O,Yokohama T.Image thinning with a cellular neural network[J].IEEE Transactions on Circuits and Systems,1990,37(5):638 ~ 640.
  • 8Shimizu M,Fukuda M,Nakamura G.A thinning algorithm for digital figures of characters[A].Proceedings 4th IEEE Southwest Symposium on Image Analysis and Interpretation[C],2000,83 ~ 87.
  • 9Petrosin A,Salvi G.A two-subcycle thinning algorithm and its parallel implementation on SIMD machines[J].IEEE Transactions on Image Processing,2000,9(2):277 ~ 283.
  • 10GIANCARLO B.A Locally Adaptive Approach for Interferometric Phase Noise Reduction[J].IEEE-Trans Geoscience and Remote Sensing,1999:264-266.

共引文献15

同被引文献43

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部