期刊文献+

三角网格的能量优化参数化方法 被引量:7

Energy Optimized Parameterization of Triangular Meshes
下载PDF
导出
摘要 三角网格参数化是纹理映射、曲面拟合与曲面重构、网格编辑等工作的基础和环节,参数化变形的大小是衡量参数化好坏的标准.为此提出一种基于变形能量优化的三角网格参数化方法.采用区域增长算法逐层展平空间三角网格,得到空间三角网格曲面的自由边界的参数化结果,并利用保形变换将自由边界的参数化结果变换为规则边界的参数化结果;同时兼顾了参数化的角度变形和面积变形,使得参数化结果具有整体变形较小的特点,并能够避免三角形折叠的现象.将该方法应用于纹理映射中的数值实验表明,其比常见的几种参数化方法具有更好的纹理映射效果. Parameterization of triangular meshes is a fundamental problem for surface fitting, surface reconstruction, and mesh editing. To minimize t parameterization of triangular meshes, a new parameterization method based on d texture mapping, he distortion of eformation energy optimization is presented in this paper. The method involves an iterative procedure, which incrementally flattens a 3D triangular mesh by region growing and obtains a parameterization with free boundary. The result is then converted to a parameterization with regular boundary by conformal mapping. Our method accounts for both the angle and area distortion during parameterization, it yields a parameterization with less global distortion and no triangular flipping. Experiments in texture mapping show that the proposed method has better performance than some popular parameterization methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第10期1472-1479,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(10771028 10801023 60533060) 国家教育部新世纪优秀人才计划
关键词 三角网格 参数化 变形能量 纹理映射 triangular mesh parameterization deformation energy texture mapping
  • 相关文献

参考文献14

  • 1彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739. 被引量:34
  • 2Floater M S. Parameterization and smooth approximation of surface triangulations [J]. Computer Aided Geometric Design, 1997, 14(3): 231-250.
  • 3Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes [J].Computer Graphics Forum, 2002, 21 (3) : 209-218.
  • 4Degener P, Meseth J, Klein R. An adaptable surface parameterization method [C] //Proceedings of the 12th International Meshing Roundtable, Santa Fe, 2003: 201-213.
  • 5Eck M, DeRose T, Duchamp T, et al. Multiresolution analysis of arbitrary meshes [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 1995: 173-182.
  • 6Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary [J]. Computers b-Graphics, 2002, 26(5)~ 677-686.
  • 7Levy B, Petitjean S, Ray N, et al. Least squares conformal maps for automatic texture atlas generation [J]. ACM Transactions on Graphics, 2002, 21(3): 362-371.
  • 8Maillot J, Yahia H, Verroust A. Interactive texture mapping [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, 1993: 27- 34.
  • 9Ray N, Levy B. Hierarchical least squares conformal map [C] //Proceedings of the llth Pacific Conference on Computer Graphics and Applieations, Canmore, 2003: 263- 270.
  • 10Sheffer A, de Sturler E. Parameterization of faceted surfaces for meshing using angle based flattening [J]. Engineering with Computers, 2001, 17(3): 326-337.

二级参考文献77

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2Praun E, SweldensW, Schroder P. Consistent mesh parameterizations[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2001. 179~184
  • 3Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Computers & Graphics, 2002, 26(5): 677~686
  • 4Farin G. Curves and Surfaces for Computer Aided Geometric Design[M]. 3rd ed. San Diego: Academic Press, 1993
  • 5Pinkall U, Polthier K. Computing discrete minimalsurfaces and their conjugates[J]. Experimental Mathematics, 1993, 2(1): 15~36
  • 6Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes[J]. Computer Graphics Forum, 2002, 21(3): 209~218
  • 7Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 8Levy B, Mallet J-L. Non-distorted texture mapping for sheared triangulated meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, 1998. 343~352
  • 9Greiner G, Hormann K. Interpolating and Approximating Scattered 3D Data with Hierarchical Tensor Product B-Splines[M]. In: Meheute A L, Rabut C, Schumaker L L, eds. Surface Fitting and Multiresolution Methods. Nashville, Tennessee: Vanderbilt University Press, 1997. 163~172
  • 10Kobbelt L P, Vorsatz J, Labisk U, et al. A shrink-wrapping approach to remeshing polygonal surfaces[J]. Computer Graphics Forum, 1999, 18(3): 119~129

共引文献44

同被引文献66

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部