摘要
对于伴随于一个扩张矩阵A的各向异性Hardy空间Hp(Rn),利用此空间的原子分解和分子分解,本文讨论了伴随于A的θ(t)型奇异积分算子在各向异性Hardy空间H1(Rn)到L1(Rn)空间的有界性,以及在各向异性Hardy空间Hp(Rn)自身上的有界性。这些结果拓展了θ(t)型奇异积分算子在Hardy空间有界性的结论。
By using the atomic and molecular decompositions of H^P(R^n) which is an anisotropic Hardy space associated with a given expansive matrix A, the boundedness of θ(t)-type singular integral operators which is associated with A and is from the anisotropic hardy space H^1(R^n) to L^1(R^n) space or from H^P(R^n) to H^P(R^n) is researched. The conclusions obtained in this paper improve the known results in the field.
出处
《青岛大学学报(自然科学版)》
CAS
2009年第3期23-26,共4页
Journal of Qingdao University(Natural Science Edition)