期刊文献+

基于局域二值模式与支持向量机的年龄估计 被引量:5

Age estimation based on local binary pattern and support vector machine
下载PDF
导出
摘要 为了解决在人脸识别过程中由于年龄的变化而使人脸识别率急剧下降的问题,可在识别过程中加入快速、准确的年龄估计。提出了一种基于局域二值模式LBP(Local Binary Pattern)与支持向量机SVM(Support Vector Machine)回归相结合的年龄估计方法。对于人脸图像首先采用基于局部纹理特征的LBP算子进行人脸纹理特征提取;然后用基于整体特征的PCA方法对提取出来的纹理特征向量进行降维;最后使用SVM回归进行训练得到全局年龄函数,建立纹理特征向量与年龄之间的对应关系。实验结果表明,这种方法可以快速有效地对人脸图像进行年龄估计。 In order to solve the problem which the rate about face recognition sharp declined due to the different age,the add rapid and accurate age estimation can be added to the process.A method is presented for age estimation based on Local Binary Pattern (LBP) and Support Vector Machine (SVM) regression.Firstly,texture feature is extracted from human faces by using LBP operator which is based on the local characteristics;secondly,the PCA method which is based on the overall characteristics is used to reduce the dimension of the vectors about texture feature;and then the support vector machine regression is used to train the vectors and gain the whole age function,so as to establish the corresponding relationship between texture feature vectors and the age.Experimental results show that the method can quickly and effectively estimate the age of the human faces.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第27期171-173,236,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60673190 江苏大学高级专业人才科研启动基金资助项目(No.05JDG020)~~
关键词 局域二值模式 支持向量机 年龄函数 年龄估计 Local Binary Pattern(LBP) Support Vector Machine(SVM) age function age estimation
  • 相关文献

参考文献5

  • 1Lanitis A,Taylor C J,Cootes T F.Toward automatic simulation of aging effects on face images[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(4):442-445.
  • 2Kwon Y H,da Vitoria Lobo N.Age classification from facial images[J].Computer Vision and Image Undenstanding, 1999,74(1 ): 1-21.
  • 3Geng Xin,Zhou Zhi-hua,Smith-Miles K.Automatie age estimation based on facial aging patterns[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29:2234-2240.
  • 4Ojala T, Pietikainen M, Maenpaa T.Mulitiresolufion gray-scale and rotation invariant texture classication with local binary patterns[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007,24:971-978.
  • 5王鹏,朱小燕.基于RBF核的SVM的模型选择及其应用[J].计算机工程与应用,2003,39(24):72-73. 被引量:48

二级参考文献4

  • 1V Vapnik.The Nature of Statistical Learning Theory[M].New York: Springer Verlag, 1995.
  • 2O Chapelle,V Vapnik et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002 ;46 : 131-159.
  • 3S Keerthi,Chih-Jen Lin.Asymptotic Behavior of Support Vector Machines with Gaussian Kernel[J].Neural Computation.
  • 4V Vapnik,O Chapelle.Bounds on error expectation for support vector machine[J].Neural Computation,2000; 12 : 2013-2036.

共引文献47

同被引文献31

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2胡斓,夏利民.基于Boosting RBF神经网络的人脸年龄估计[J].计算机工程,2006,32(19):199-201. 被引量:6
  • 3朱文球,刘强.融合AdaBoost和启发式特征搜索的人脸性别分类[J].计算机工程,2007,33(2):171-173. 被引量:7
  • 4王俊艳,苏光大,林行刚.人脸图像年龄估计[J].清华大学学报(自然科学版),2007,47(4):526-529. 被引量:6
  • 5LAPEDRIZA A, MASIP D, VITRIA 1. Are external face features useful for automatic face classification?[C]//Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3,2005.
  • 6HAN X, UGAIL H, PALMER I. Gender classification based on 3D face geometry features using SVM[C]//Proceedings of the 2009 International Conference on Cyber Worlds,2009: 114-118.
  • 7CHOI S E, LEE Y J, LEE S J, et al. Age estimation us- ing a hierarchical classifier based on global and local facial features[J]. Pattern Recognition,2011,44: 1262-1281.
  • 8UEKI K, KOMATSU H, IMAIZUMI S, et al. A method of gender classification by integrating facial, hairstyle, and clothing images[CJ//Proceedings of the 17th International Conference on Pattern Recognition,4,2004.
  • 9AHONEN T, HADID A, PIETIKAINEN M. Face recognition with Local Binary Patterns[C]//Proceedings of the Euro- pean Conference on Computer Vision, Prague, Czech2004, 469-481.
  • 10LIAN H C, LU B L. Multi-view gender classification us- ing local binary atterns and suDport vector machines[Cl// Proceedings of the 3rd International Symposium on Neural Networks(ISNN' 06), Chengdu, China, 2006,202-209.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部