期刊文献+

基于GA-RBF和不变矩的高压瓷瓶裂缝识别 被引量:2

Recognition of Porcelain Bottle Crack Based on GA-RBF and Moment Invariants
下载PDF
导出
摘要 为了保证高压输电线路的正常运行,可以通过高压输电线路巡检机器人视觉系统完成高压输电线路的检测。通过CCD摄像头等硬件模拟机器人的视觉,完成对绝缘瓷瓶裂缝图像的采集,并通过滤除噪声、图像分割等预处理操作和形状特征,完成图像中裂缝的定位。对于聚焦放大后的裂缝图像提取不变矩等4个特征值,得出图像信息。最后利用遗传算法和RBF网络相结合的算法,实现对绝缘瓷瓶裂缝5种状态:横向、纵向、块状、网状、无裂缝的分类识别。通过仿真和实验比较表明,该算法可以有效、可靠地运用于绝缘瓷瓶裂缝类型识别研究中,并可方便地应用于其他领域。 To ensure the security of power transmission lines, an inspection method is presented by using the vision system of inspection robot. The images of porcelain bottle cracks are collected by CCD, which is used to simulate the vision system of the robot. The cracks in the picture are located by the image preprocessing, such as smoothing, segmenting and eigenvector of images. Four features, such as moment invariants ect. , are extracted from the image to get the information of the whole image. An algorithm is designed by combining genetic algorithm with RBF network. The porcelain bottles cracks are divided into five types: transverse, longitudinal, block, alligator and non-distress. The simulation and experiment results show that the algorithms could be used effectively and reliably in recognition of porcelain bottles crack types. The algorisms could also be used effectively in other fields.
出处 《控制工程》 CSCD 北大核心 2009年第5期561-565,共5页 Control Engineering of China
基金 国家863基金资助项目(2005AA420064)
关键词 检测区域定位 特征提取 不变矩 分类识别 GA-RBF算法 localization feature extraction moment invariants classification GA-RBF
  • 相关文献

参考文献9

二级参考文献28

  • 1张天序,刘进.目标不变矩的稳定性研究[J].红外与毫米波学报,2004,23(3):197-200. 被引量:10
  • 2李立源,陈维南.一种强鲁棒的完全确定型的快速阈值化方法[J].模式识别与人工智能,1993,6(3):235-241. 被引量:13
  • 3Milan Sonka,Vaclav Hlavac,Roger Boyle.Image Processing,Analysis and Machine Vision[M],Second Edition,Beijing:Posts & Telecom Press, 2002.
  • 4T W Ridler,S Calvard.Picture Thresholding Using An herative Selection Method[J].IEEE Transaction on System,Man and Cybernetics, 1978;8(8) :630-632.
  • 5H Freeman.On the encoding of arbitrary geometric configuratinns[J]. IRE Trans on Electronic Computers,1961;EC-10:260-268.
  • 6M K Hu.Visual Pattern Recognition by Moment Invariants[J].IRE Transaction Information Theory, 1962; 8 (2) : 179- 187.
  • 7Chaur-Chin Chen.Improved Moment Invariants for Shape Discfimi, nation[J].Pattem Recognition, 1993 ;26(5 ) :683-686.
  • 8D S Huang.The local minima free condition of feedforward neural networks for outer-supervised learning[J].IEEE Transaction on Systems, Man and Cybernetics, 1993 ; 28B (3) :477-480.
  • 9[3]Nello Cristianini,John Shawe Taylor.支持向量机导论[M].北京:电子工业出版社,2004:15-40.
  • 10Otsu N. Discriminant and least square threshold selection[A]. Proc 4IJCPR[C], 1978.592-596.

共引文献160

同被引文献22

  • 1丁宏锴,萧蕴诗,李斌宇,岳继光.基于PSO-RBF NN的非线性系统辨识方法仿真研究[J].系统仿真学报,2005,17(8):1826-1829. 被引量:17
  • 2王峰,谈怀江.GA-BP和GA-RBF网络在结构损伤分析的比较[J].微机发展,2005,15(8):158-160. 被引量:4
  • 3张顶学,关治洪,刘新芝.基于PSO的RBF神经网络学习算法及其应用[J].计算机工程与应用,2006,42(20):13-15. 被引量:44
  • 4韩力群.人工神经网络[M].北京:北京邮电大学出版社,2006.
  • 5潘文超.果蝇最佳化演算法[M].台湾:沧海书局,2011.
  • 6张广军.机器视觉[M]{H}北京:科学出版社,2005.
  • 7Irene Y. H. Gu,Unai Sistiaga,Sonja M. Berlijn,Anders Fahlstrm. Automatic Surveillance and Analysis of Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines[M].Computer Vision and Graphics,2009.368-379.
  • 8胡小锋;赵辉.Visual C++/MATLAB图像处理与识别实用案例精选[M]{H}北京:人民邮电出版社,20049.
  • 9张强;王正林.精通MATLAB图像处理[M]{H}北京:电子工业出版社,2009.
  • 10Thomazini,DanielGelfuso,Maria Virginia,Correa Altafim Ruy Alberto. Classification of Polymers Insulators Hydrophobicity basead on Digital Image Processing[J].MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS,2012,(15):365-371.

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部