期刊文献+

基于融合的多类支持向量机 被引量:11

Multi-class Support Vector Machine Based on Fusion
下载PDF
导出
摘要 支持向量机可以处理2类问题,通过"一对一"和"一对多"方式能将2类支持向量机扩展为多类支持向量机。提出一种基于两类支持向量机融合的多类支持向量机构成方法。对分类器融合采用极大值法、极小值法、乘积法、均值法、中值法、投票法和各种决策模板融合方法。在日本女性表情数据库JAFFE上应用该方法进行人脸表情识别,结果证明了其有效性。 Support Vector Machine(SVM) can deal with binary class problem. By using "one against one" and "one against all" approach, binary class SVM can be expanded to multi-class SVM. A construction method for multi-class SVM based on binary class SVMs fusing is proposed. The classifier fusion approaches include Maximum, Minimum, Product, Mean, Median, Major Voting fusion methods and decision template fusion methods. This method is applied to the facial expression recognition for Japanese female expression database JAFFE and proved to be effective.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第19期187-188,191,共3页 Computer Engineering
基金 广东省自然科学基金资助项目"多生物特征融合与识别模型的算法研究"(07010869) 北京大学视觉与听觉信息处理国家重点实验室开放课题基金资助项目"生物特征融合与识别的应用研究"(0505) 浙江大学CAD&CG国家重点实验室开放课题基金资助项目(A0703)
关键词 多类支持向量机 分类器融合 决策模板 人脸表情识别 multi-class Support Vector Machine(SVM) classifier fusion decision template facial expression recognition
  • 相关文献

参考文献4

  • 1Kuncheva L I. Decision Templates for Multiple Classifier Fusion: An Experimental Comparison[J]. Pattern Recognition, 2001, 34(2): 299-314.
  • 2王珏,周志华,周傲英.机器学习及应用[M].北京:清华大学出版社,2006.
  • 3Alexandru N M, Caruana R. Predicting Good Probabilities with Supervised Learning[C]//Proc. of ICML'05. Bonn, Germany: [s. n.], 2005: 625-632.
  • 4刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62

二级参考文献56

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2Mehrabian A.Communication without words[J].Psychology Today,1968,2(4):53 ~ 56.
  • 3Cohen I,Sebe N,Garg A,et al.Facial expression recognition from video sequences:Temporal and static modeling[J].ComputerVision and Image Understanding,2003,91(1-2):160 ~ 187.
  • 4Cohen I,Sebe N,Cozman F G,et al.Learning bayesian network classifiers for facial expression.recognition with both labeled and unlabeled data[A].In:Proceedings of International Conference on Computer Vision and Pattern Recognition[C],Madison,Wisconsin,USA,2003,1:595 ~ 604.
  • 5Bartlett M S,Littlewort G,Frank M,et al.Recognizing facial expression:machine learning and application to spontaneous behavior[A].In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],San Diego,CA,USA,2005,2:568 ~ 573.
  • 6Guo G D,Dyer C R.Learning from examples in the small sample case:face expression recognition[J].IEEE Transactions on System,Man and Cybernetics-Part B,Special Issue on Learning in Computer Vision and Pattern Recognition,2005,35 (3):477 ~ 488.
  • 7Muller S,Wallhoff F,Hulsken F,et al.Facial expression recognition using pseudo 3-D hidden Markov models[A].In:Proceedings of International Conference on Pattern Recognition[C],Québec City,Canada,2002,2:32 ~ 35.
  • 8Yeasin M,Bullot B,Sharma R.From facial expression to level of interest:a spatio-temporal approach[A].In:Proceedings of International Conference on Computer Vision and Pattern Recognition[C],Washington,DC,USA,2004,2:922 ~ 927.
  • 9Kanade T,Cohn J F,Tian Y.Comprehensive database for facial expression analysis[A].In:Proceedings of the Fourth International Conference of Face and Gesture Recognition[C],Grenoble,France,2000:46 ~ 53.
  • 10Sebe N,Lew M,Cohen I,et al.Authentic facial expression analysis[A].In:Proceedings of International Conference on Automatic Face and Gesture Recognition[C],Seoul,Korea,2004:517 ~ 522.

共引文献64

同被引文献73

引证文献11

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部