期刊文献+

运动摄像机下快速提取运动目标的新方法 被引量:2

A Novel Method for Moving Object Extraction with an Active Camera
下载PDF
导出
摘要 本文研究摄像机和目标同时运动情况下的实时目标提取问题。首先运用背景差方法,检测出静止摄像机下的运动区域,为了克服连通域分析法耗时长的不足,提出重心偏移迭代法快速获得感兴趣运动目标。在改进Camshift跟踪算法中,提出采用Bayesian概率法则在由Kalman滤波器预测的感兴趣区域(ROI)内获取颜色概率密度分布图像(CPDDI),引入即时背景(IB)以抑制背景特征。提出依据跟踪结果进行目标提取的方法,即结合CPDDI特征,并辅以适当的形态学滤波策略,从跟踪结果中提取出运动摄像机下的运动目标,解决目标被动态背景干扰的问题。实验结果表明,提出的算法能够较稳定和完整地提取出运动摄像机下的运动目标,对复杂动态背景的适应性较强,且算法完全达到了实时的运行速度。 How to extract moving object in the case of moving camera is researched in this paper. At first, the background subtraction is implemented to detect the moving region in the case of motionless camera, and then the interested moving object is fast segmented from the detected moving region with the proposed method of barycenter shift iteration instead of the time-consuming method of connected components analysis. In the enhanced Camshift tracking algorithm, the Color Probability Density Distribution Image (CPDDI) in the Region of Interest (ROI) predicted by the Kalman filter is obtained, and Instantaneous Background (IB) is introduced to suppress background features. A novel method is suggested to extract the moving object from the tracking result combining CPDDI with proper morphologic filter strategy in the case of moving camera, which can resist the disturbance from the background. Experiments show that the proposed method can extract intact moving objects stably in the case of moving camera, and can well deal with dynamic complex background. The system is computationally efficient and can run in real-time speed.
作者 向桂山
出处 《光电工程》 CAS CSCD 北大核心 2009年第10期1-5,11,共6页 Opto-Electronic Engineering
基金 浙江省教育厅科研计划项目(Y200804686)
关键词 CAMSHIFT 重心偏移迭代方法 Bayesian概率法则 感兴趣区域 即时背景 Camshift barycenter shift iteration method Bayesian law region of interest instantaneous background
  • 相关文献

参考文献11

  • 1Haritaoglu I, Harwood D, Davis L S. W4: Real-time surveillance of people and their activities [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828), 2000, 22(7): 809-830.
  • 2Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video [C]// Proceeding of IEEE Workshop on Applications of Computer Vision, Princeton, NJ, USA, Oct 19-21, 1998. Washington D C, USA: IEEE Computer Society, 1998: 8-14.
  • 3Barron J, Fleet D, Beauchemin S. Performance of optical flow techniques [J]. International Journal of Computer Vision (S0920-5691), 1994, 12(1): 43-77.
  • 4张辉,王强,徐光祐,朱志刚.运动目标的快速检测、跟踪和判别[J].清华大学学报(自然科学版),2002,42(10):1401-1404. 被引量:25
  • 5曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 6Lin Chia-Wen, Wang Chih-Ming, Chang Yao-Jen, et al. Realtime object extraction and tracking with an active camera using image mosaics [C]// Proceeding of IEEE Workshop on Multimedia Signal Processing, Virgin Islands, USA, Dec 9-11, 2002. Washington D C, USA: IEEE, 2002: 149-152.
  • 7Kang S, Paik J, Koschan A, et al. Real-time video tracking using PTZ cameras [J]. Proe. of SPIE(S0277-786X), 2003, 5132: 103-111.
  • 8Comaniciu D, Ramesh V, Meer E Kernel-based object tracking [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828), 2003, 25(5): 564-577.
  • 9Bradski G R. Real-time face and object tracking as a component of a perceptual user interface [C]// Proceeding of IEEE Workshop on Applications of Computer Vision, Princeton, NJ, USA, Oct 19-21, 1998. Washington D C, USA: IEEE Computer Society, 1998: 214-219.
  • 10XIANG Guishan WANG Xuanyin LIANG Dongtai.BACKGROUND RECONSTRUCTION AND OBJECT EXTRACTION BASED ON COLOR AND OBJECT TRACKING[J].Chinese Journal of Mechanical Engineering,2006,19(3):471-474. 被引量:2

二级参考文献20

  • 1潘锋,王宣银,向桂山,梁冬泰.一种新的运动目标检测与跟踪算法[J].光电工程,2005,32(1):43-46. 被引量:18
  • 2SHI J,TOMASI C. Good features to track[A]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Los Alamitos, CA, USA:IEEE, 1994. 593-600.
  • 3贾云得.计算机视觉[M].北京:科学出版社,2003.226-251.
  • 4D. COMANICIU, P. MEER. Mean shift: a robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5D. COMANICIU, P. MEER. Robust analysis of feature spaces: color image segmentation [A]. Proc, 1997 IEEE conf.Computer Vision and Pattern Recognition[C]. San Juan, Puerto Rico: IEEE, 1997. 750-755.
  • 6Changjiang YANG, Ramani DURAISWAMI, Larry DAVIS. Similarity measure for nonparametric kernel density based object tracking[A]. Eighteenth Annual Conference on Neural Information Processing Systems[C]. Victoria, British Columbia,Canada: NIPS, 2004
  • 7Robert T. COLLINS. Mean-shift blob tracking through scale space [J]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03), 2003, 2: 234-240.
  • 8K. NUMMIARO, E. Koller-MEIER, L.Van GOOL. Color features for tracking non-rigid objects. Special Issue on Visual Surveillance [J]. Chinese Journal of Automation, 2003, 29(3): 345-355.
  • 9D. COMANICIU, V. RAMESH, E MEER. Kernel-based object tracking [J]. IEEE Transactions. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 10K. FUKUNAGE, L, D. HOSTETLER. The estimation of the gradient of a density function with application in pattern recognition [J]. IEEE Trans. on Information Theory, 1975, 21(1): 32-40.

共引文献80

同被引文献22

  • 1张春森,崔卫红.序列图像中运动目标的分割定位[J].计算机工程与应用,2004,40(26):89-91. 被引量:14
  • 2赖作镁,王敬儒,张启衡.基于鲁棒背景运动补偿的运动目标检测算法[J].计算机应用研究,2007,24(3):66-68. 被引量:10
  • 3郑世友,费树岷,刘怀,龙飞.动态场景图像序列中运动目标检测新方法[J].中国图象图形学报,2007,12(9):1590-1597. 被引量:6
  • 4Bugeau A, Pérez P. Detection and Segmentation of Moving Objects in Complex Scenes[J]. Computer Vision and Image Understanding, 2009, 113(4): 459-476.
  • 5Comaniciu D. Mean Shift: A Robust Approach Toward Feature Space Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 234-240.
  • 6Hidayatullah P, Konik H. Camshift Improvement on Multi-hue Object and Multi-object Tracking[C] //Proc. of the 3rd European Workshop on Visual Information Processing. Paris, France: [s. n.] , 2011: 143-148.
  • 7Likas A, Vlassis M, Verbeek J. The Global K-means Clustering Algorithm[J]. Pattern Recognition, 2003, 36(2): 451-461.
  • 8Shi Jianbo, Tomasi C. Good Feature to Track[C] //Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.] : IEEE Press, 1994: 593-600.
  • 9David G L. Object Recognition from Local Scale-invariant Features[C] //Proc. of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: [s. n.] , 1999: 1150-1157.
  • 10Shen S A,Tong M L,Deng H L. Model based human motion tracking using probability evolutionary algorithm[J].{H}Pattern Recognition Letters,2008,(13):1877-1886.doi:10.1016/j.patrec.2008.06.014.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部