期刊文献+

一种混沌优化机制的双量子粒子群优化算法 被引量:7

Double quantum delta particle swarm optimization based on chaos optimization strategy
下载PDF
导出
摘要 针对量子粒子群优化算法(quantum delta Particle Swarm Optimization,PSO)在处理高维复杂函数时存在收敛速度慢、易陷入局部最优和算法通用性不强等缺点,提出了一种基于混沌优化机制的双量子粒子群优化算法。它借鉴群体位置方差的早熟判断机制,同时提出了一种逐步缩小搜索变量空间的新方法。典型数值实验表明,该算法效率高、优化性能好、对初始位置具有很强的鲁棒性。尤其是该算法具有很强的避免局部极小能力,其性能远远优于单一优化方法。 Using quantum delta Particle Swarm Optimization(PSO) to handle complex functions with high-dimension has the problems of low convergence speed and sensitivity to local convergence.This paper proposes a double quantum delta particle swarm optimization based on chaos optimization strategy.It adopts prematurity judge mechanism by the variance of the population's fitness and a new method of reducing the searching space of variable optimized is proposed.Numerical simulation results on benchmark complex functions with high dimension show that the hybrid particle-swarm optimization is effective,efficient,fairly robust to initial conditions.Especially the hybrid particle swarm optimization is of strong ability to avoid being trapped in local minima,and performances are fairly superior to single method.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第30期34-36,39,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.50138010~~
关键词 双量子粒子群优化算法 双混沌优化机制 早熟机制 double quantum delta particle swarm optimaziton double chaos optimization quickly convergence strategy
  • 相关文献

参考文献6

  • 1Kennedy J,Eberhart R C.Partiele swarm optimization[C]//IEEE International Conference on Neural Networks.Perth,Piscataway,NJ, Australia:IEEE Service Center, 1995,Ⅳ: 1942-1948.
  • 2李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,24(5):569-574. 被引量:56
  • 3Eberhart R C,Hu X.Human tremor analysis using particle swarm optimization[C]//Proceeding of the IEEE Congress on Evolutionary Computation(CEC 1999).Washinggon D C:IEEE Press ,1999 :1927- 1930.
  • 4Yoshida H,Kawata K,FuKuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Transactions on Power Systems,2000,15 (4) : 1232-1239.
  • 5张彤,王宏伟,王子才.变尺度混沌优化方法及其应用[J].控制与决策,1999,14(3):285-288. 被引量:225
  • 6Parsoponlos K E,Vrahatis M N.Particle swarm optimizer in noisy and continuously changing environments[C]//Hamzaed M H.Proceedings of the IASTED International Conference on Artificial Intelligence and Soft Computing.Mexico:ACTA Press,2001 : 289-294.

二级参考文献11

  • 1陈炳瑞,冯夏庭.压缩搜索空间与速度范围粒子群优化算法[J].东北大学学报(自然科学版),2005,26(5):488-491. 被引量:20
  • 2郝柏林.从抛物线谈起-混沌动力学引论[M].上海科技教育出版社,1995.1-20.
  • 3郝柏林,从抛物线谈起.混沌动力学引论,1995年,1页
  • 4Kennedy J,Eberhart R C.Particle swarms optimization[C].Proc.IEEE International Conference on Neural Networks[M].USA:IEEE Press,1995.4:1942-1948.
  • 5van den Bergh F,Engelbrecht A P.Cooperative learning in neural networks using particle swarm optimizers[J].South African Computer Journal,2000,11:84-90.
  • 6Shi Y H,Eberhart R C.A modified particle swarm optimizer[C].IEEE World Congress on Computational Intelligence[M].Anchorage,1998.69-73.
  • 7Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C].Proc of the 3rd Genetic and Evolutionary Computation Conference[M].Sanfrancisco,2001.469-476.
  • 8Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors in particle swarm optimization[C].Proc 2000 Congress Evolutionary Computation[M].Piscataway:IEEE Press,2000.84-88.
  • 9Hyun K,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinational optimization[J].IEEE Transactions on Evolutionary Computing,2002,6(6):580-593.
  • 10李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615. 被引量:535

共引文献277

同被引文献84

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部