期刊文献+

一种构造三次PH曲线的几何方法 被引量:1

Geometric Method for Constructing Cubic PH Curve
下载PDF
导出
摘要 通过给出始末两点以及对应的切线与弦线,利用三次PH曲线控制多边形的边与角之间的几何关系,通过加入辅助线,用几何方法求出控制多边形的弦长,从而构造出满足初始条件的控制多边形.在此基础上求出满足条件的三次PH曲线,并给出了数值实例. Geometric relationship among Bézier control points of cubic PH curve is used to construct cubic PH curve.The initial condition is that the two points and the angles between the corresponding tangents and chord we have known,and then the length of sides of the control polygon is worked out through adding some auxiliary lines to the original graphics,finally we obtain the cubic PH curve.A numerical example is presented at last.
作者 陈远宁 陈琳
出处 《大学数学》 2009年第4期127-130,共4页 College Mathematics
关键词 PH曲线 控制多边形 几何构造 PH curve control polygon geometric method
  • 相关文献

参考文献8

二级参考文献37

  • 1梅向明.微分几何[M].北京:高等教育出版社,1995..
  • 2Klass R. An offset spline approximation for plane cubic spline[J]. Computer-Aided Design, 1983, 15(4): 297-299.
  • 3Tiller W, Hanson E G. Offsets of two dimensional profiles [J].IEEE Computer Graphics & Applications, 1984, 4(9) : 36-46.
  • 4Coquillart S. Computinging offsets of B-spline curves [J].Computer-Aided Design, 1988, 19(6) : 305-309.
  • 5Hoschek J, Wissel N. Optimal approximation conversion of spline curve and spline approximation of offset curves [J].Computer Aided Design, 1988, 20(8) : 475-483.
  • 6Hoschek J. Spline approximation of offset [J]. Computer Aided Geometric Design, 1988, 5:33-40.
  • 7Li Y M. Curve offsetting base on Legendre series [J].Computer Aided Geometric Design, 1998, 15:711-720.
  • 8Farouki R T. The conformal map Z→Z^2 of the hodograph plane[J]. Computer Aided Geometric Design, 1994, 11:363-390.
  • 9Lu Wei. Offset-rational parametric plane curves [J]. Computer Aided Geometric Design, 1995, 12:601-616.
  • 10Lee I K, Kim M S, Elber G. Planar curve offset based on circle approximation [J]. Computer-Aided Design, 1996, 28(8) : 617-630.

共引文献37

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部