期刊文献+

一种改进的有向无环图支持向量机分类算法 被引量:2

An Improved SVM Multiclass Classification Algorithm Based on DAG
下载PDF
导出
摘要 针对有向无环图支持向量机多类分类方法未采用有效的有向无环图生成算法,提出了一种改进的有向无环图生成算法。该方法采用了聚类分析中类距离的思想作为层次分类依据。实验结果表明,该方法与原方法相比具有较高的分类精度。 Aiming at the problem that the SVM multiclass classification algorithm based on DAG doesn't use an effective constructing algorithm of directed acyclic graph, an improved SVM multiclass classification algorithm based on DAG is put forward. The class distance of clustering is taken as the basis of hierarchical classification. The experiment results show that the new method has higher classification accuracy than the original algorithm does.
作者 王晓锋
机构地区 渤海大学数学系
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2009年第5期973-975,共3页 Journal of Chongqing Jiaotong University(Natural Science)
基金 辽宁省教育厅项目(2008Z018)
关键词 支持向量机 聚类 DAG 多类分类 supporting vector machines(SVG) clustering directed acyelic graph(DAG) multiclass classification
  • 相关文献

参考文献7

  • 1Vapnik V. The Nature of Statistical Learning Theory[ M]. New York : Springer-Verlage, 1995.
  • 2边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..
  • 3Bottou L,Cortes C,Denker J. Comparison of classifier methods:a case study in handwriting digit recognition[C]//Proceedinss of the 12th IAPR International Conferenceon Pattern Recognition. Jerusalerm :IEEE, 1994 :77 - 82.
  • 4KreBerl U. Pairwise classification and support Vector machines[ C]//Advances in Kernel Methods-Supprot Vector Learning. Cambrige, MIT Press, 1999:255 - 268.
  • 5Platt J C, Cristianini N, Shawe T J. Large margin DAGs for multiclass classification [ C ]//Advances in Neural Information Processing Systems. Cambrige, MIT Press, 2000: 547 - 553.
  • 6刘勇,全廷伟.基于DAG-SVMS的SVM多类分类方法[J].统计与决策,2007,23(20):146-148. 被引量:12
  • 7唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50

二级参考文献15

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 3Knerr S, Personnaz L, Dreyfus G.Single-layer learning revisited: A stepwise procedure for building and training a neural network[C].In:J Fogelman ed. Neurocomputing: Algorithms, Architectures and Applications,New York: Springer-Verlag, 1990.
  • 4Bottou L,Cortes C,Denker J et al. Comparison of classifier methods:A case study in handwritten digit recognition[C].In:Proc of the International Conference on Pattern Recognition,1994:77~87.
  • 5Platt J,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[C].In:Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2000; 1 (12): 547~553.
  • 6Sungmoon C,Sang H O,Soo-Young L.Support Vector Machines with Binary Tree Architecture for Multi-Class Classification[J].Neural Information Processing-Letters and Reviews, 2004; 2 (3): 47~51.
  • 7Michie D ,Spiegelhalter D ,Taylor C.Machine Learning ,Neural and Statistical Classification[DB].http://www.liacc.up.pt/ML/statlog/datasets. html.
  • 8VAPNIK V.The Nature of Statistical Learning[M].New York Spring Verlag,1995.
  • 9Burges CJC.A Tutorial on Support Vector Machines for pattern Recognition[J].Knowledge Discovery and Data Mining,1998,2(2):121-167.
  • 10HSU C-W,LIN C-J.A Comparison of Methods for Multi-class Support Vector Machines[J].IEEE Transaction on Neural Network,2002,13(2) 415-425.

共引文献114

同被引文献32

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 3陈荣元,蒋加伏.基于聚类算法和层次支持向量机的人脸识别方法[J].计算技术与自动化,2006,25(1):103-105. 被引量:2
  • 4于璐,柳军,沙宪政.虚拟仪器在脉象采集分析系统中的应用[J].医疗设备信息,2007,22(5):10-13. 被引量:4
  • 5唐浩,屈梁生.基于支持向量机的发动机故障诊断[J].西安交通大学学报,2007,41(9):1124-1126. 被引量:19
  • 6ZHANG W B, CAI Q, WANG H J, et al. Application of harmonic wavelet package to feature extraction in impulsive signal [ C ]//Proceedings of the 2nd International Congress on Image and Signal Processing, Oct. 17-19, 2009. Tianjin, China: IEEE, 2009: 1-3.
  • 7DOSHI R A, KING R L, LAWRENCE G W. Wavelet-SOM in feature extraction of hyperspectral data for classification of nematode species [C]// Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, July 23-28, 2007. Barcelona, Spain: IEEE, 2007: 2818-2821.
  • 8RIFKIN R M, KLAUTAU A. In defense of onevs-all classification [J]. Journal of Machine Learning Research, 2004, 5.- 101-141.
  • 9JOSHI A J, PORIKLI F, PAPANIKOLOPOULOS N. Multiclass active learning for image classification[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009. Miami, FL, USA: IEEE, 2009: 2372-2379.
  • 10SONG F X, ZHANG D P, YANG J Y, et al. A multiple maximum scatter difference discriminant criterion for facial feature extraction [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37(6), 1599-1606.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部