期刊文献+

基于珍珠母堆垛微结构复合材料力学特性 被引量:2

Mechanics Properties of Composite Materials Based on Stacked Microstructure of Nacre
下载PDF
导出
摘要 基于软体动物贝壳内的珍珠母微结构构建复合材料的三维有限元模型,由六方形文石小片单元和有机基质薄层单元逐层堆垛而成。模拟三点弯曲发现,不管六方形小片单元或薄层单元各自的弹性模量大小如何,由其构成的复合材料的模量与组成单元之间均满足一定的曲线关系,并且复合材料的力学特性存在显著的尺寸效应。以珍珠母的试验数据为基础,模拟发现珍珠母的力学特性随文石片间的有机基质薄层模量的减小而降低。但是珍珠母内的交错层叠堆垛的结构设计机制才是决定它刚度的主导因素,这与试验结果相当吻合。 3D finite element models of composite materials are constructed based on the microstructure of the nacre of mollusc shells stacked with hexagonal aragonite platelets and organic thin interlayers. Three-point bending tests are simulated using this model. It is found that regardless of the respective modulus of hexagonal platelets or thin interlayers, the modulus of the composite structure meets a curve relationship with those of platelets and interlayers. And mechanics properties of the composite structure exhibit a remarkable scale effect. Finally, based on the mechanics parameters from experiments, it is confirmed that mechanics properties of the nacre reduce with the gradual decrease of the modulus of organic interlayers. But for the stiffness of the nacre, the dominated factor is the layer-by-layer crossed and stacked form of the structural design mechanism, and it is in agreement with experimental results.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第5期660-664,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(10732040 50805079)资助项目 江苏省自然科学基金(BK2008042)资助项目
关键词 珍珠母 文石片 有机基质 力学特性 有限元法 nacre aragonite platelet organic matrix mechanics properties finite element mothod
  • 相关文献

参考文献25

  • 1Lowenstam H A. Minerals formed by organisms[J]. Science, 1981, 211(4487) : 1126-1131.
  • 2Wilt F. Developmental biology meets materials science: morphogenesis of biomineralized struetures[J]. Developmental Biology, 2005, 280(1) :15-25.
  • 3Weiner S. Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth[J]. CRC Crit Rev Biochem, 1986, 20(4) : 365- 407.
  • 4Currey J D, Taylor J D. The mechanical behaviour of some molluscan hard tissues[J]. Journal of Zoology, 1974, 173:395-406.
  • 5Eichhorn S J, Scurr D J, Mummery P M, et al. The role of residual stress in the fracture properties of a natural ceramic[J]. J Mater Chem, 2005, 15(9): 947-752.
  • 6Watabe N. Crystal growth of calcium carbonate in the invertebrates [J]. Prog Crystal Growth Character Mater, 1981, 4:99-147.
  • 7Currey J D. Mechanical properties of mother of pearl in tension[J]. Proc R Soc B, 1977, 196(1125):443- 463.
  • 8Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre[J]. Proc R Soe B, 1988, 234 (1277) :415-425.
  • 9Kamat S, Su X, Ballarini R, et al. Structural basis for the fracture toughness of the shell of conch strombus gigas[J]. Nature, 2000, 405(6790):1036- 1040.
  • 10Smith B L, Schaffer T E, Viani M, et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites[J]. Nature, 1999, 399 (6738) : 761-763.

同被引文献40

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部