期刊文献+

并发序列模式挖掘方法研究 被引量:6

Study on method for mining concurrent sequential pattern
下载PDF
导出
摘要 提出并发关系的概念,在此基础上给出并发度的概念,进而提出并发序列模式的概念。给出了用于挖掘并发序列模式的方法——基于支持向量的并发序列模式挖掘方法。该方法通过产生序列模式的支持向量求得2-分支并发序列模式及其支持向量;然后通过(k-1)-分支并发序列模式的支持向量和序列模式的支持向量产生k-分支并发序列模式及其支持向量,进而求得所有k分支并发序列模式。实验中采用IBM数据生成器产生的合成数据源对算法进行了验证实现,实验表明算法是有效和可行的,在不同的支持度和最小并发度下,挖掘得到并发序列模式总数随最小并发度的增大呈指数递减。 The definitions of concurrent relation and concurrence threshold were re-submitted. On the basis of these definitions, the concept of concurrent sequential pattern was given. The method to mine concurrent sequential patterns was also proposed, named concurrent sequential patterns mining method based on supporting vector. Under this method, through finding the supporting vector of each element of sequential patterns, the two branch concurrent sequential patterns and their supporting vectors could be got. The supporting vectors of k branch sequential pattern and their supporting vectors could be acquired using supporting vector of any k - 1 branch concurrent sequential pattern and supporting vector of any sequential pattern, and thus the whole k branch concurrent sequential patterns could be found. The method was tested and analyzed to be efficient and feasible through experiments.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3096-3099,共4页 journal of Computer Applications
基金 辽宁省教育厅科学研究计划资助项目(05L338)
关键词 并发关系 并发度 并发序列模式 结构关系模式 concurrent relation concurrence threshold concurrent sequential pattern structural relation pattern
  • 相关文献

参考文献9

  • 1LU JING, ADJEI O, CHEN WEI-RU, et al. Post sequential pattern mining: A new method for discovering structural patterns [ C]//IIP 2004: Proceedings of the 2ndlntemational Conference on Intelligent Information Processing. Berlin: Springer-Verlag, 2004:239-250.
  • 2LU JING, CHEN WEI-RU, ADJEI O, et al. Sequential patterns postprocessing for structural relation patterns mining [ J]. International Journal of Data Warehousing and Mining,2008,4(3) : 71 -89.
  • 3吕静,王晓峰,Osei Adjei,Fiaz Hussain.序列模式图及其构造算法[J].计算机学报,2004,27(6):782-788. 被引量:16
  • 4MANNILA H, MEEK C. Global partial order from sequential data [C]// KDD-2000: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000: 161- 168.
  • 5INOKUCHI A, WASHIO T, MOTODA H. An Apriori-based algorithm for mining frequent substructures from graph data [ C l// PDKK'00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, LNCS 1910. Berlin: Springer-Verlag, 2000:13 - 23.
  • 6张洋,陈未如,纪元.互斥关系模式挖掘算法研究[J].计算机工程与设计,2008,29(22):5776-5779. 被引量:4
  • 7彭弗楠,陈未如,黄宁.结构关系模式挖掘中的重复序列模式挖掘[J].甘肃科技,2008,24(8):20-22. 被引量:4
  • 8李超,余昭平.基于矩阵的Apriori算法改进[J].计算机工程,2006,32(23):68-69. 被引量:43
  • 9AGRAWAL R, SRIKANT R. Fast algorithm for mining association rules [ C]// VLDB 1994: 20th International Conference on Very Large Data Bases. Los Altos, CA: Morgan Kaufmann, 1994:487 - 499.

二级参考文献23

  • 1吕静,王晓峰,Osei Adjei,Fiaz Hussain.序列模式图及其构造算法[J].计算机学报,2004,27(6):782-788. 被引量:16
  • 2夏明波,王晓川,孙永强,金士尧.序列模式挖掘算法研究[J].计算机技术与发展,2006,16(4):4-6. 被引量:13
  • 3Ayres J,Flannick J,Gehrke J.Sequential pattern mining using a bitmap representation [J]. Knowledge Discovery and Data Mining,2002,12(6):429-435.
  • 4Lu J,Adjei O,Chen W R, et al.Post sequential pattern mining: A new method for discovering structural patterns [C]. Beijing, China:Proceedings of the 2nd International Conference on Intelligent Information Processing,2004:239-250.
  • 5Mannila H Meek.Global partial orders from sequential data[C]. Sixth Annual Conference on Knowledge Discovery and Data Mining(KDD,2000),2000:161-168.
  • 6Inokuchi A,Washio T, Motoda H.An apriori-based algorithm for mining frequent substructures from graph data [C]. PDKK'00, 2000:13-23.
  • 7Lu J, Adjei O, Chen W R, et al.An apriori-based algorithm for mining concurrent branch pattern[C]. Romania:Proc of the 4th RoEduNet International Conference:Education/Training and Information/Communication Technologies-RoEduNet, 2005:183- 189.
  • 8Lu J,Adjei O,Chen W R, et al.Large candidate branches-based method for mining concurrent branch pattem[C]Studia Univ Babes-Bolyai, Informatica,2005:49-57.
  • 9Antonie M L,Zaiiane O R.Mining positive and negative association rules: An approach for confined rules[J] Proc Intl Conf on Principles and Practice of Knowledge Discovery in Databases, 2004:27-38.
  • 10Wu Xindong,Zhang Chengqi,Zhang Shichao.Efficient mining of both positive and negative association rules [J]. ACM Transactions on Information Systems,2004(7):381-405.

共引文献60

同被引文献38

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部