期刊文献+

支持向量机和神经网络联合软测量SBR污水处理中COD的方法 被引量:9

SVM and Neural Networks Joint Approach to the Soft Measurement of COD Values in SBR Wastewater Treatment Systems
下载PDF
导出
摘要 为了实时测量序批式活性污泥法(SBR)污水处理系统中的化学需氧量(COD),提出了一种支持向量机和神经网络联合软测量SBR污水处理中COD的方法。针对COD软测量建模中有限种类辅助变量造成的矛盾数据问题和神经网络学习的局部最小问题,该方法通过引入支持向量机对COD值进行预估计,再根据COD的变化规律使用两种神经网络模型分别估计污水COD值。实验表明:本文方法的软测量结果优于单一神经网络的软测量结果。 In order to measure the chemical oxygen demand (COD) of sequencing batch reactor (S]3R) sewage treatment systems in real-time, a method jointing a support vector machine and neural networks to softmeasuring COD values of SBR wastewater treatment is presented. To solve the conflicting data problems caused by the limited types of auxiliary variables and local minimum problems of the neural network models for the COD soft measurement, the proposed method first estimates the COD values by a support vector machine. The two neural network models in accordance with the changes of the COD are respectively used to estimate the COD values. The experiment results show that the soft-measurement results obtained by the proposed method in this paper are superior to those achieved by a single neural network.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第10期1519-1524,共6页 Chinese Journal of Sensors and Actuators
基金 上海市科委科技攻关项目资助(07dz15013)
关键词 软测量 数据融合 实验及仿真 序批式活性污泥法(SBR) COD 支持向量机 神经网络 soft measurement data fusion experiment and simulation SBR(sequencing batch reactor) COD(chemical oxygen demand) SVM(support vector machine) neural network
  • 相关文献

参考文献19

  • 1国家环境保护总局《水河废水监测分析方法编委会》,水河废水监测分析方法(第四版)[M],北京:中国环境科学出版社,2002:p210.
  • 2Azedine Charef, Antoine Ghauch, Patrick Baussand and Michel Martin-Bouyer,Water Quality Monitoring Using a Smart Sensing System[J], Measurement, 2000,28 (3): 219-224.
  • 3Choi Dong-Jin and Park Heekyung, A Hybrid Artificial Neural Network as a Software Sensor for Optimal Control of a Wastewater Treatment Process[J], Water Research, 2001,35 (16):3959-3967.
  • 4Dae Sung Lee, Che Ok J eon, Jong Moon Park, Kun Soo Chang, Hybrid Neural Network Modeling of a Full-scale industrial Wastewater Treatment Process[J],Biotechnology and bioengineering, 2002,78(6): 670-682.
  • 5张文艺,钟梅英,蔡建安.活性污泥法系统人工神经网络模型[J].给水排水,2002,28(6):12-15. 被引量:18
  • 6刘载文,崔莉凤,祁国强,侯朝桢,刘太杰.SBR出水BOD值的RBF软测量法[J].中国给水排水,2004,20(5):17-20. 被引量:10
  • 7管秋,王万良,徐新黎,陈胜勇.基于神经网络的污水处理指标软测量研究[J].环境污染与防治,2006,28(2):156-158. 被引量:22
  • 8Corinna Cortes, Vladimir Vapnik, Support-Vector Networks [J], Machine Learning, 1995,20(3) : 273-297.
  • 9Christopher J. C. Burges, A Tutorial on Support Vector Ma chines for Pattem Recognition[J]. Data Mining and Knowledge Discovery, 1998,2 : 121 - 167.
  • 10曾薇,彭永臻,王淑莹.以DO、ORP、pH作为两段SBR工艺的实时控制参数[J].环境科学学报,2003,23(2):252-256. 被引量:29

二级参考文献26

  • 1袁德成,于海斌.活性污泥脱氮过程的建模与控制[J].控制理论与应用,2004,21(3):483-488. 被引量:5
  • 2彭永臻.SBR法的五大优点[J].中国给水排水,1993,9(2):29-31. 被引量:177
  • 3彭永臻,高凯,余政哲.两段SBR法处理石油化工废水[J].给水排水,1996,22(6):26-28. 被引量:30
  • 4张自杰.排水工程(下册)[M].北京:中国建筑工业出版社,1998.258-259.
  • 5张文艺 钟梅英 等.活性污泥法人工神经网络建模研究[J].安徽工业大学学报,2000,18(3):34-37.
  • 6顾夏声.废水生物处理数学模型[M].北京:中国建筑工业出版社,1993..
  • 7Wang W L, Ren M, Guan Q.. Soft-sensing method for wastewater treatment based on BP neural network Proc. of the 4th World Congress on Intelligent Control and Automation..上海:同济大学出版社,,2002.. 2330-2332..
  • 8Guan Q, Wang W L.. Soft-sensing method for wastewater treatment based on RBF neural network. Poc. of CNNC..合肥:合肥工业大学出版社,, 2004..259-263..
  • 9Charpentier J, Godart H, Martin G, et al. Oxidation-reduction potential (ORP) regulationas a way to optimize aeration and C,N, P removal: experimental basis and various full-scale examples. Wat. Sci. Tech., 1989,21:1209-1223.
  • 10Sasaki K, Yasuji Y, Kazushi T, et al. Simultaneous removal of nitrogen and phosphorus in intermittently aerated 2-tank Act.Slu. Process using DO and ORP bening point control. Wat. Sci.Tech. , 1993, 28(11-12):513-521.

共引文献81

同被引文献105

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部