期刊文献+

求解Hamilton-Jacobi方程的一类高精度差分格式 被引量:1

A Class of High Order Accurate Difference Schemes for Hamilton-Jacobi Equations
下载PDF
导出
摘要 构造了一、二维非线性Hamilton-Jacobi方程的一类新的高精度高分辨率差分格式.首先将计算区域划分为互不重叠的子单元,再根据格式的精度要求分割子单元为细小子单元,其次通过子单元上各个细小子单元节点的函数值构造空间导数的高阶插值逼近,为避免由此产生的数值振荡,对空间导数在各节点左右侧的值进行TVD/TVB校正,利用高阶Runge-Kutta TVD时间离散方法得到一维Hamilton-Jacobi方程的高阶全离散格式并推广到二维情况,最后给出了几个典型的数值算例,验证了格式具有计算简单、高分辨间断导数、无振荡等特性. A new class of high order accuracy, high resolution difference schemes is presented for one dimensional and two dimensional nonlinear Hamilton-Jacobi equations. Firstly, the computational domain is divided into many pieces of non-overlapping subcells, and then each subcell is further subdivided into subsubcells according to required accuracy; Secondly, by using the nodal point values in each subcell, high-order interpolating approximation are used to compute the spatial derivative. Furthermore, TVD/TVB correction are given to prevent oscillations from the high-order interpolation. Afterwards, by means of highorder Runge-Kutta TVD time discretization, a high-order fully diseretization method is obtained. The extension to two dimensional Hamilton-Jacobi equations is also carried out. Finally, several classic numerical tests are given, which show that simplicity in computation, high-order accuracy, high-resolution discontinuities in the derivatives and non-oscillatory behaviors of the resulting schemes.
作者 郑华盛
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期53-59,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 江西省自然科学基金资助项目(0611096) 江西省教育厅科技项目计划(GJJ08224) 南昌航空大学博士启动基金资助项目(EA200607031)
关键词 HAMILTON-JACOBI方程 高精度 高分辨率 差分格式 Runge-KuttaTVD时间离散 Hamilton-Jacobi equation high order accuracy high resolution difference scheme Runge-Kutta TVD time discretization
  • 相关文献

参考文献10

  • 1Crandall M G, Lions P L. Viscosity Solutions of Hamilton-Jacobi Equations [J]. Trans Amer Math Soc, 1983, 277(1) :1 -- 42.
  • 2Crandall M G, Evans L C, Lions P L. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations [J].Trans Amer Math Soc, 1984, 282(1): 487- 502.
  • 3Osher S, Shu C W. High Order Essentially Nonoseillatory Schemes for Hamilton-Jacobi Equations [J]. SIAM J Numer Anal, 1991, 28: 907--922.
  • 4Lin C T, Tadmor E. High-resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations [J]. SIAM J Sci Comput, 2000, 21(6):2163-2186.
  • 5Kurganov A, Tadmor E. New High-resolution Semi-discrete Central Schemes for Hamilton-Jaeobi Equations [J]. J Comput Phys, 2000, 160:720--742.
  • 6Bryson S, Levy D. High-order Semi-discrete Central-upwind Schemes for Mul,ti-dimensional Hamilton-Jacobi Equations [J]. J Comput Phys, 2003, 189 : 63- 87.
  • 7Lepsky O, Hu C Q, Shu C W. Analysis of the Discontinuous Galerkin Method for Hamilton-Jaeobi Equations [J]. Appl Numer Math, 2000, 33: 423--434.
  • 8郑华盛,赵宁.非线性双曲型守恒律的高精度MmB差分格式[J].计算力学学报,2006,23(2):218-222. 被引量:2
  • 9Cockburn B, Shu C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework [J]. Math Comput, 1989, 52:411 --435.
  • 10Shu C W, Osher S. Efficient Implementation of Essential Non-oscillatory Shock Capturing Schemes [J].J Comput Phys, 1988, 77:439--471.

二级参考文献12

  • 1张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165.
  • 2HARTEN A.High resolution schemes for hyperbolicconservation laws[J].J Comput Phys,1983,49:357-393.
  • 3HARTEN A,ENGQUIST B,OSHER S,et al.Uni-formly high-order accurate essential non-oscillatory schemes III[J].J Comput Phys,1987,71:231-303.
  • 4SHU C W,OSHER S.Efficient implementation of essential nonoscillatory shock capturing schemes[J].J Comput Phys,1988,77:439-471.
  • 5SHU C W,OSHER S.Efficient implementation of essential nonoscillatory shock capturing schemes II[J].J Comput Phys,1989,83:32-78.
  • 6WU H M,YANG S L.MmB-a new Class of Accur-ate High Resolution Schemes for Conservation Laws in two Dimensions[M].Konrad-Zuse-Zentrum für Informationstechnik Berlin,Preprint SC89-6,Juli,1989.
  • 7COCKBURN B,SHU C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:general framework[J].Math Comput,1989,52:411-435.
  • 8LIU X D,OSHER S.Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids[J].J Comput Phys,1998,142:304-330.
  • 9COLELLA P.Multidimensional upwind methods for hyperbolic conservation laws[J].J Comput Phys,1990,87:171-200.
  • 10WOODWARD P,COLELLA P.The numerical simulation of two dimensional fluid flow with strong shocks[J].J Comput Phys,1984,54:115-173.

共引文献1

同被引文献6

  • 1张素.Lagrange插值公式的一个推广[J].西南师范大学学报(自然科学版),1997,22(2):220-222. 被引量:1
  • 2LIU Yong-ping.On Entire(0,m1,m2,…,mq)-Interpolation on Equidistant Nodes[J].Approx Theory and Its Appl,1991,7(3):27-34.
  • 3BUTZER P L,STENS R L.The Summation Formula Whittakess Cardinal Series and Approximate Integration[J].Ca-nadian Math Soci Conference Proceedings,1983(3):19-36.
  • 4SHARMA A,SZABADOS J,VARGA R S.Some 2-Periodic Trigonometric Interpolation Problems on EquidistantNodes[J].Analysis,1991,11:165-190.
  • 5王小刚,李学文.二元Marcinkiewicz型和的强性逼近[J].西南大学学报(自然科学版),2009,31(6):129-134. 被引量:3
  • 6文晓霞,侯象乾.双周期(0;p,q,r)整插值[J].江西师范大学学报(自然科学版),2004,28(1):27-31. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部