摘要
近年来,著名的Von Neumann极大极小定理被许多学者加以推广,其中最好的结果为Konig定理(1992)和张石生-张宪定理(1995),本文证明一个拓扑型极大极小定理,它是张石生 -张宪中主要结果的统一与改进,从而使极大极小定理的应用范围得到了进一步的扩充。
Recent years, the famous Von Neumann mimimax theorem has been generalized by many people. Among these generalizations, the Konig theorem(1991) and Chang-Chang theorem (1995) are best results. In this paper a topological version of minimax theoren including the main results as its special cases is given. Thus the application area of minimax theorem is expanded further.
出处
《苏州大学学报(自然科学版)》
CAS
1998年第2期1-6,共6页
Journal of Soochow University(Natural Science Edition)
关键词
极大极小定理
连通集
拓扑有限交性质
拓扑型
Mnimax theorem,Connected set, Topologically finite intersection property.