期刊文献+

基于区间值模糊逻辑神经元的区间值模糊C-均值聚类神经网络 被引量:7

Interval-Valued Fuzzy C-Means Clustering Neural Networks Based on Interval-Valued Fuzzy Logic Neurons
下载PDF
导出
摘要 本文提出了一种基于区间值模糊逻辑神经元的三层前馈自组织神经网络模型,用来实现区间值模糊C-均值聚类分析.网络第一、二层神经元的输入、输出和权连接取值属于区间值模糊集I[0,1].第一层神经元为区间值线性神经元;第二层为区间值模糊相等神经元,其功能是实现输入样本与各类的匹配运算.本文采用区间值模糊相等关系作为匹配的指标为了定义区间值模糊相等神经元,本文在点值模糊相等关系的基础上推导了区间值模糊相等关系的计算方法;第三层神经元为模糊竞争神经元,各神经元的输出代表输入样本的模糊分类结果此外.本文提出了一种区间值模糊竞争学习算法用于区间值模糊C-均值聚类神经网络的训练. In this paper a three-layered feedforward self-organizing neural network model is proposed based on interval-valued fuzzy logic neurons in order to realize the interval-t,alued fuzzy C-means (IVFCM) clustering analysis. The inputs/outputs of the first and second layer neurons and weights between them belong to foe interval-valued fuzzy sets I [0, 1]. The neurons in the first layer are intervalvalued linear neurons; The neurons in the second layer are interval-valued fuzzy equality neurons (IVFEN) which realize the matching computation between the input samples and all of the clusters. Interval-valued fuzzy equality relation is used to compute matching. In order to define the model of IVFEN, the computation method of interval-valued fuzzy equality relation is deduced based on point-valued fuzzy equality relation. The neurons in the third layer are fuzzy competition neurons. The outputs of the third-layer neurons represent the fuzzy classification result of the input sample. Furthermore, intervalvalued fuzzy competition learning (IVFCL) is proposed to train the IVFCM neural network (IVFCMNN)
出处 《电子学报》 EI CAS CSCD 北大核心 1998年第10期99-103,共5页 Acta Electronica Sinica
基金 国家攀登计划认知科学(神经网络)重大关键项目 国家自然科学基金
关键词 C-均值聚类 自组织神经网络 区间值模糊 Interval-valued fuzzy C-means clustering, Self-organizing neural network, Intervalvalued fuzzy equality relation, Interval-valued fuzzy competition learning
  • 相关文献

参考文献4

二级参考文献6

  • 1杨叔子,计算机故障诊断,1994年
  • 2王士同,Int J Fuzzy Sets and Systems,1993年,11卷
  • 3石纯一,人工智能原理,1993年
  • 4王士同,模糊推理理论及其应用,1995年
  • 5杨行峻,人工神经网络,1992年
  • 6吴佑寿

共引文献15

同被引文献39

  • 1曾黄麟,袁慧,刘小芳.模糊中心聚类的模式识别学习方法[J].中国工程科学,2004,6(11):33-37. 被引量:1
  • 2毛建忠,吴智铭.神经网络在成组技术方面的应用[J].上海交通大学学报,1996,30(4):137-142. 被引量:2
  • 3黄建军,谢维信.正则模糊联想记忆[J].电子学报,1997,25(7):68-71. 被引量:2
  • 4王士同.模糊推理理论与模糊专家系统[M].上海:上海科学技术文献出版社,1994..
  • 5孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),1997,37(3):76-80. 被引量:85
  • 6Mounim A, El-Yacoubi,Michel Gilloux, et al. A Statistical Approach for Phrase Location and Recognition within a Text Line: An Application to Street Name Recognition[J]. IEEE Trans. on Pattern Anal. Machine Intell., 2002, 24(2):172-188
  • 7Nafiz Atica, Yarman-Vural Fatos T. An Overview of Character Recognition Focused on Off-Line and Writing[J]. IEEE Trans. on Systems,Man, and Cybemetics--Part C: Application and Reviews, 2001,31(2) :216 - 233.
  • 8Ishibuehi H,Tanaka H,Okada H.Fuzzy Sets and Systems[J].1993,57(1):27-40.
  • 9Zadeh LA.Fuzzy Sets[J].Information and Control,1965,8:338-353.
  • 10Zadeh L A, Fuzzy Sets, Information and Control, 1965, 8(2): 338-358

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部