期刊文献+

非对称铺设SMA层的复合材料梁在热荷载作用下的变形分析 被引量:3

Deformation analysis of composite beam with asymmetrically paved SMA-layer subjected to thermal load
下载PDF
导出
摘要 基于几何非线性理论,提出一类偏心铺设的形状记忆合金(SMA)复合材料梁的数学模型,建立梁在温度载荷作用下的非线性弯曲控制方程,应用打靶法进行数值求解,得到均匀加热下两端不可移简支SMA层合梁的热弯曲数值解.给出具体算例的平衡构形和平衡路径,并分析和讨论SMA的几何和物理参数对梁变形的影响.结果表明梁在升温的一开始就发生变形,升温过程中随着SMA的相变,变形趋势加剧,通过改变SMA的几何、物理参数可以调整梁的变形. The mathematical model of a shape memory alloy (SMA) composite beam was presented. Based on an accurate geometrically nonlinear theory, the governing equations of nonlinear thermal bending and buckling of a beam subjected to a temperature rise were derived. By using the shooting method to solve the corresponding nonlinear boundary-value problem, numerical solutions were obtained for the SMA composite beam with its both ends being immovably and simply supported under uniform temperature rise. The equilibrium paths and configurations of a typical example were given. The effect of geometric and physical parameters of SMA on the deformation of the beam was also examined. The result showed that the deformation happened at the beginning of temperature rise. In the process of temperature rise, the deformation trend was exacerbated with the SMA' s phase change. By changing the SMA' s geometry and physical parameters, the deformation of the beam could be adjusted.
出处 《兰州理工大学学报》 CAS 北大核心 2009年第5期163-167,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(10872083 10602021) 甘肃省自然科学基金(0809RJZA021)
关键词 形状记忆合金 复合材料梁 打靶法 热弯曲 shape memory alloy(SMA) composite beams shooting method thermal bending
  • 相关文献

参考文献8

  • 1BRIMAN V. Review of mechanics of shape memory alloy structures [J]. Appl Mech Re, 1997,50(11):629-645.
  • 2滕兆春,李世荣,付小华.热载荷作用下嵌入SMA丝复合材料梁的横向自由振动[J].工程力学,2005,22(4):131-136. 被引量:4
  • 3LI S R, YU W S. Nonlinear bending of composite circular plates with embedded shape memory alloy fibers [J]. Advanced Materials Research, 2008,33-37 : 501-506.
  • 4李世荣,夏荣厚.机械和热载荷共同作用下梁的非线性弯曲和稳定性[J].兰州理工大学学报,2007,33(3):164-167. 被引量:4
  • 5李世荣,常学平,赵永刚.双层梁在均匀升温场内的几何非线性问题[J].工程力学,2006,23(10):151-155. 被引量:2
  • 6BRINSON L C. One-dimensional constitutive behavior and shape memory alloys: thermo-mechanical derivation with non- constant material functions and redefined martensite internal variable [J]. Journal of Intelligent Material System and Structures, 1993,4 : 229-243.
  • 7LI S R,ZHOU Y H,ZHENG X J. Thermal post-buelding of a heated elastic rod with pined-fixed ends[J]. Journal of Thermal Stresses, 2002,25 (1) : 45-56.
  • 8WILLIAM H P, BRIAN P F, SAUL A T, et al. Numerical recipes-the art of scientific computing [M]. New York:Cambridge University Press, 1986.

二级参考文献28

  • 1梅胜敏,秦太验,陶宝祺.SMA用于振动主动控制的方法初探[J].力学与实践,1995,17(4):16-19. 被引量:26
  • 2William H P,Brain P F,Sau A T,et al.Numerical Recipes-The Art of Scientific Computing [M].New York:Cambridge University Press,1986.578~614.
  • 3Brinson L C,Lammering R.Finite element analysis of the behavior of shape memory alloys and their applications [J].International Journal Solids Structures,1993,30(23):3261~3280.
  • 4Chen Q,Levy C.Active vibration control of elastic beam by means of shape memory alloy layers [J].Journal of Smart Materials and Structures,1996,5:400~406.
  • 5Brinson L C.One-dimensional constitutive behavior of shape memory alloys:Thermomechanical derivation with non-constant material functions and redefined martensite internal variable [J].Journal of Intelligent Material Systems and Structures,1993,4:229~242.
  • 6Tanaka K.A thermomechanical sketch of shape memory effect:one-dimensional tensile behavior [J].Res Mechanica,1986,118:251~263.
  • 7Liang C,Rogers C A.One-dimensional thermo- mechanical constitutive relations for shape memory materials [J].Journal of Intelligent Material and Structure,1990,1:207~234.
  • 8Rogers C A,Lang C,Fuller C R.Modeling of shape memory alloy hybrid composites for structural acoustic control [J].J.Acoust.Soc.Am.,1991,89(1):210~220.
  • 9Coffin D W,Bloom F.Elastica solution for the hygrothermal buckling of a beam[J].International Journal of Non-Linear Mechanics,1999,34:935~947.
  • 10.

共引文献7

同被引文献17

  • 1喀兴林.高等量子力学[M].2版.北京:高等教育出版社,2001.
  • 2J. Stoer. Introduction to Numerical Analysis. [M].New York: Springer, 2002.
  • 3David J. Griffiths. Introduction to Quantum Mechanics [ M].2版.北京:机械工业出版社.2006.
  • 4高为浪,张景文,韩景龙.智能复合材料机翼颤振分析[J].兰州理工大学学报,2007,33(4):35-39. 被引量:1
  • 5王国珍,魏欣.缺口根半径对NiTi形状记忆合金缺口前应力-应变分布和马氏体相转变的影响[J].兰州理工大学学报,2007,33(5):29-33. 被引量:1
  • 6夏志鹏,郑铁生.求解非线性动力系统周期解的改进打靶法[J].力学与实践,2007,29(6):23-26. 被引量:4
  • 7YUVARAJA M, MOULEESWARAN S, Shape memory alloy- based adap:iVe-l~SSive dynamic v~bration absorber for vibration control in piping applications [J].Jourml of Vibration and Control, 2015,21 (9), 1838-1847,.
  • 8MONKMAN G. Advances in shape memory polymer actuation[J].Mechatronics, 2000,10 (4), 489-498.
  • 9RATNA D, KARGER-KOCSIS J. Recent advances in shape memory polymers and composites, a review [J]. Journal of Materials Science, 2008,43 (1), 254-269.
  • 10LENDLEIN A, KELCH S, Shapememory polymers [J], Ange- wandre Chemic Inrernatiorml Edition, 2002,41(12), 2034-2057.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部