期刊文献+

基于对称像素块识别的病猪行为监测系统 被引量:17

Sick Pig Behavior Monitor System Based on Symmetrical Pixel Block Recognization
下载PDF
导出
摘要 针对传统人工观察方法不能及时发现群养猪患病的缺点,设计一种病猪行为自动监测系统。该系统基于高级RISC微处理器平台,对群养猪的排泄行为进行24h监控,采用改进的运动目标检测算法和基于像素块对称特征的图像识别算法定位具有异常行为的疑似病猪,将报警图像通过GPRS网络传送至监控中心。实验结果表明,该系统具有较好的实时性和监测效果,通用性强。 This paper designs an automatic detection system aiming at the disadvantage that traditional manpower observation method can not f'md pigs sick in time. The system monitors the pigs excretion behavior by 24 h based on advanced RISC Microprocessor platform. It orients suspected sick abnormal pigs by using an improved moving object detection algorithm and image recognization algorithm based on symmetrical characteristic of pixel block, the alarming image is send to the monitor center through GPRS. Experimental results show that the system has well real-time and monitor effect, and its commonality is good.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第21期250-252,共3页 Computer Engineering
基金 江苏大学江苏省现代农业装备与技术重点实验室开放基金资助项目(NZ200709)
关键词 猪行为 自动监测 像素块对称特征 pig behavior automatic monitor symmetrical characteristic ofpixel block
  • 相关文献

参考文献5

二级参考文献12

  • 1崔莹莹,杨杰,梁栋.基于边缘的标志牌文本提取方法[J].影像技术,2006,18(1):28-30. 被引量:6
  • 2苏雷,章四新,邵建伟,陈辉,赖来彬.猪咬尾咬耳症原因与防治措施[J].湖北畜牧兽医,2006,27(7):26-27. 被引量:2
  • 3章毓晋.图像处理与分析[M].北京:清华大学出版社,1999..
  • 4Xiuwen Liu. A computational framework for real-time detection and recognition of large number of classes[J]. Applied Imagery Pattern Recognition Workshop,2004,33(10):229-234.
  • 5Benkrid K, Crookes D, Bouridane A, et al. A high level software environment for FPGA based image processing[J]. Image Processing and Its Applications,1999,7(1):112-116.
  • 6Arribas P C, Macia F M. FPGA board for real time vision development systems[J]. Devices, Circuits and Systems, 2002,T021-1-T021-6.
  • 7陈清明,王连纯.现代养猪生产[M].5版.北京:中国农业大学出版社,2005:118,133.
  • 8章毓晋.图像处理和分析基础[M].北京:高等教育出版社,2001.
  • 9王郑耀.数字图像的边缘检测[M].西安:西安交通大学出版社,2002.
  • 10Kim K C,Byun H R,Song Y J.Scene text extraction in natural scene images using hierarchical feature combining and verification[C].Proceedings of the 17th International Conference on Pattern Recognition,2004:679-682.

共引文献8

同被引文献314

引证文献17

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部