期刊文献+

6-PSS空间并联机构的刚度特性 被引量:7

Stiffness Characteristics of a 6-PSS Spatial Parallel Mechanism
下载PDF
导出
摘要 为了揭示在外力作用下机构的几何形变对其刚度的影响,掌握其变化规律,为机构参数设计及其刚度控制提供合理参数,对6-PSS空间并联机构的刚度特性进行了系统研究。首先,通过建立约束方程和坐标关联方程,将关节坐标转化为直角坐标,推导出基于守恒协调转换刚度矩阵的6-PSS空间并联机构的刚度映射公式。然后,根据求解结果绘制出不同参数下6-PSS空间并联机构的刚度映射曲线,为对比机构在外力作用下其刚度的改变和研究其变化规律提供参考。最后,根据导出的公式和数值分析算例,对机构的刚度特性进行分析和讨论。 To reveal the stiffness behavior and find out its change rule in order to provide the reasonable parameters for the structural parameter design and stiffness control, the stiffness characteristics of a 6--PSS spatial mechanism was studied by considering the effects of the change in geometry due to compliance caused by the external forces. First, the joint coordinates were transmitted into Cartesian spaces by forming the constraint equations and the incidence equations, the analytical stiffness equations of the 3--PRR planar parallel mechanism were derived based on the conservative con-gruence transformation (CCT) stiffness matrix. Then, the stiffness maps of the 6--PSS mechanism were plotted with and without external forces in order to show the changes of the stiffness and provide the references for studying its change rules. Finally, the stiffness characteristics of the mechanism were analyzed and discussed according to the stiffness equations and numerical examples.
机构地区 东北大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第21期2521-2525,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50875038)
关键词 空间并联机构 几何形变 刚度映射 刚度控制 参数设计 spatial parallel mechanism geometry change stiffness mapping stiffness control parameter design
  • 相关文献

参考文献13

  • 1Gosselin C. Stiffness Mapping for Parallel Manipulators[J]. IEEE Transactions on Robotics and Automation, 1990, 6(3): 377-382.
  • 2Griffis M,Duffy J. Global Stiffness Modeling of A Class of Simple Compliant Couplings[J]. Mechanism and Machine Theory, 1993, 28(2):207-224.
  • 3Duffy J. Statics and Kinematics with Applications to Robotics[M]. New York:Cambridge University Press, 1996.
  • 4高峰,黄玉美,彭中波,樊泽明.混联式机床的并联机构刚度解析[J].制造技术与机床,2001(6):32-34. 被引量:7
  • 5敖银辉,陈新,温兆麟.平面并联机构刚度与动力学指标分析[J].中国机械工程,2004,15(18):1607-1609. 被引量:7
  • 6孙立宁,董为,杜志江.基于大行程柔性铰链的并联机器人刚度分析[J].机械工程学报,2005,41(8):90-95. 被引量:18
  • 7韩书葵,方跃法,槐创锋.4自由度并联机器人刚度分析[J].机械工程学报,2006,42(B05):31-34. 被引量:24
  • 8Liu X J, Jin Z L, Gao F. Optimum Design of 3-- DOF Spherical Parallel Manipulators with Respect to the Conditioning and Stiffness lndiees[J]. Mechanism and Machine Theory,2000,5(9) :1257-1267.
  • 9Huang T, Zhao X, Whitehouse D J. Stiffness Estimation of a Tripod-- based Parallel Kinematic Machine[J]. IEEE Trans. on Robotics and Automation, 2002, 8(1) :50-58.
  • 10Huang C T, Hung W H, Kao I. New Conservative Stiffness Mapping for the Stewart- Gough Platform[C]//Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington, D C. 2002:823-828.

二级参考文献38

  • 1Gosselin C,Angles J.The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator[J].J Mech Tran Automat Design,1989,111(2):202-207.
  • 2Bhattacharaya S,Hatwal H,Ghosh A.On the optimum design stewart platform type parallel manipulators[J].Robotica,1995,13:113-140.
  • 3Merlet J P.Designing a parallel manipulator for a specific workspace[J].The International Journal of Robotics Research,1997,16(4):545-556.
  • 4Merlet J P.DEMOCRAT:A design methodology for the conception of robots with parallel architecture[J].Robotica,1997,15:367-373.
  • 5Sanger D J,Chen J Q,Zhang S J,Howard D.A general method for the stiffness analysis of manipulator mechanisms[J].Proc Instn Mech Engns,2000,214(Part C):673-685.
  • 6Ei-Khasawneh B S,Ferreira P M.Computation of stiffness and stiffness bounds for parallel link manipulators[J].International Journal of Machine Tool & Manufacturer,1999,39:321-342.
  • 7Lobontiu N, Paine J S N, Garcia E, et al. Corner-filleted flexure hinges. ASME J. of Mechanical Design, 2001,123(3): 346~352.
  • 8Lobontiu N, Paine J S N. Design of symmetric conic-section flexure hinges based on close-form compliance equations. Mechanism and Machine Theory, 2002,37(5): 477~498.
  • 9Lobontiu N, Garcia E. Two-axis flexure hinges with axially-collocated and symmetric notches. Computers and Structures, 2003, 81(31): 1 329~1 341.
  • 10Ryu J W, Gweon D G. Error analysis of a flexure hinge mechanism induced by machining imperfection. Precision Engineering, 1997, 21(2, 3): 83~89.

共引文献50

同被引文献56

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部