期刊文献+

一种应用于超声无损检测的广谱反卷积技术 被引量:3

A wide adaptability deconvolution technique for ultrasonic nondestructive testing
下载PDF
导出
摘要 为了提高复合材料超声无损检测(UNDT)分辨率,提出一种基于小波变换和粒子群算法(PSO)的广谱反卷积新技术.在利用小波变换多分辨率分析能力对超声反射回波信号消噪,并确定超声反射系数位置集的基础上,采用粒子群优化算法求出相应位置反射系数的幅值,从而消除畸变小波的平滑作用,有效改善检测分辨率.同时,该技术还突破传统方法仅适合于超声回波信号为平稳、检测噪声为白色以及先验知识已知的场合应用的局限性.计算机仿真和实验研究表明,与传统反卷积技术相比,该方法能极大地提高超声检测的分辨率,并体现出较强的广谱适应性和鲁棒性. A new wide adaptability deconvolution technique based on wavelet transform and particle swarm optimization (PSO) was developed to increase the resolution of ultrasonic nondestructive testing (UNDT) of composite materials. The original ultrasonic echo signal was de-noised and the position set of ultrasonic reflection coefficient was determined by using wavelet transform multi-resolution analysis. Then PSO was adopted to solve the ultrasonic reflection coefficient amplitudes corresponding to the position set, so as to eliminate the distorted wavelet's smoothness effect and improve the detection resolution. Mean while, limitations of the traditional methods, such as only suitable for stationary ultrasonic signal, white noise and prior knowledge provided beforehand, were broken through by the new technique. Simulation and experimental results showed that the new method could greatly improve the ultrasonic testing resolution compared with the conventional deconvolution technique, and its wide adaptability as well as strong robustness was demonstrated.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第10期1766-1771,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2006AA04Z329) 国家自然科学基金资助项目(50675193) 宁波市自然科学基金资助项目(B2006022)
关键词 超声无损检测 检测分辨率 反卷积 小波变换 粒子群算法 ultrasonic nondestructive testing(UNDT) detection resolution deconvolution wavelet trans form particle swarm optimization(PSO)
  • 相关文献

参考文献7

  • 1CHEN C H, SIN S K. On effective spectrum-based ultrasonic deconvolution techniques for hidden flaw characterization [J ]. Acoustical Society of America, 1990, 87(3): 976-987.
  • 2JHANG K, JANG H, PARK B, et al. Wavelet analysis based deconvolution to improve the resolution of scanning acoustic microscope images for the inspection of thin die layer in semiconductor[J]. NDT and E International Volume, 2002, 35(8): 549-557.
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE, 1995.. 1942- 1948.
  • 4ANGRISANI L , DAPONTE P, D'APUZZO M. The detection of echoes from multilayer structures using the wavelet transform [J ]. Instrumentation and Measure- ment, 2000, 49(4): 727-731.
  • 5DONOHO D L. De-Noising by soft-thresholding [J]. IEEE Transactions on Imformation Technology, 1995, 41 (3) :612 - 627.
  • 6杨克己.基于神经网络的小波域超声信号消噪技术研究[J].浙江大学学报(工学版),2005,39(6):775-779. 被引量:2
  • 7TOMAS O, TADEUSZ S. Minimum entropy deconvolution of pulse-echo signals acquired from attenuative layered media[J]. Acoustical Society of America, 2001, 109(6) : 2831 - 2839.

二级参考文献9

  • 1CHEN J, SHI Y, SHI S. Noise analysis of digital ultrasonic nondestructive evaluation system[J]. The International Journal of Pressure Vessels and Piping, 1999,76(9): 619-630.
  • 2GUSTAFSSON, MATS G, STEPINSKI T. Studies of split spectrum processing, optimal detection, and maximum likelihood amplitude estimation using a simple clutter model[J]. Ultrasonics, 1997,35(1): 31-52.
  • 3DRAI R, BENAMMAR A, BENCHAALA A. Signal processing for the detection of multiple imperfection echoes drowned in the structural noise[J]. Ultrasonics, 2004, 42(9): 831-835.
  • 4NEWHAUSE V L, BILGUATY N M. Flaw-to-grain echo enhancement by split-spectrum processing[J]. Ultrasonics, 1982,20(2): 59-68.
  • 5ANGRISANI L, DAPONTE P, D'APUZZO M. The detection of echoes from multilayer structures using the wavelet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(4): 727-731.
  • 6DONOHOD L. De-Noising by soft-thresholding [J]. IEEE Transactions on Imformation Theory,1995, 41(3): 613-627.
  • 7杨克己,胡旭晓.基于神经网络的自适应裂谱分析方法[J].中国机械工程,2002,13(9):806-809. 被引量:4
  • 8张秀玲,李海滨.一种基于RBF神经网络的数字模式识别方法[J].仪器仪表学报,2002,23(3):265-267. 被引量:19
  • 9康锋,叶学松,王平,陈裕泉.基于心音信号处理的冠心病诊断的研究[J].浙江大学学报(工学版),2004,38(1):98-102. 被引量:4

共引文献1

同被引文献31

  • 1张国林,田壮,谢明志.超声透射法与反射波法在基桩检测中的对比分析[J].无损检测,2008,30(1):52-54. 被引量:6
  • 2张宏.超长钻孔灌注桩检测方法[J].中外公路,2005,25(4):146-148. 被引量:4
  • 3WAN Sui-ren, RAJU B I, SRINIVASAN A M. Robust deconvolution of high fi'equeney ultrasound images using higher-order spectral analysis and wavelets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50(10): 1286-1295.
  • 4FIGUEIREDO M'ARIO A T. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
  • 5TZIKAS D G, LIKAS A C. Variational bayesian sparse kernel-based blind mage deconvolution with student's-t priors[J]. IEEE Transactions on Image Processing, 2009, 18(4): 753-764.
  • 6NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310-316.
  • 7ZHANG Xiao-qun, BURGE M. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253- 276.
  • 8PALLADINI A, TESTONI N. A reduced complexity estimation algorithm for ultrasound images de-blurring[J]. Computer Methods and Programs in Biomedicine, 2009, 95(2): 4-11.
  • 9DUPE F X, FADILI J M, STARCK J L. A proximal iterationfor deconvolving poisson noisy images using sparse rep-resentations[J]. IEEE Transactions on Image Processing Publication, 2009, 18(2): 310-321.
  • 10KIM J, JANG S. High order statistics based blind deconvolution of bi-level images with unknown intensity values[J]. Optics Express, 2010, 18(12): 12872-12889.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部