期刊文献+

典型相关分析去除脑电信号中眼电伪迹的研究 被引量:14

Research on removing EOG artifacts from EEG based on CCA
下载PDF
导出
摘要 给出了一种基于典型相关分析(Canonical Correlation Analysis,CCA)的盲源分离技术来去除脑电信号中的眼电伪迹。通过实验验证了基于CCA的盲源分离方法去除眼电伪迹的有效性,并将该方法与广泛使用的独立分量分析(Independent Component Analysis,ICA)进行了比较。实验结果表明,基于CCA的盲源分离方法可以对眼电伪迹进行成功地分离和消除,该方法相较于ICA方法而言,算法更为简单,计算速度更快。 Canonical Correlation Analysis(CCA) as a Blind Source Separation(BSS) technique is applied to the removal of Electroeneephalography(EEG) artifacts.This method is tested and compared with the widely used Independent Component Analysis(ICA) method through experiments.The experiment results show that the CCA-based method is effective in separating and eliminating Electrooculography (EOG) contamination.Compared with ICA method,the proposed method has the advantages of simplicity and high speed.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第31期218-220,共3页 Computer Engineering and Applications
基金 重庆大学高层次人才科研启动基金项目
关键词 脑电信号 眼电伪迹 典型相关分析 盲源分离 Electroeneephalography(EEG) EOG artifacts Canonical Correlation Analysis ( CCA ) Blind Source Separation (BSS)
  • 相关文献

参考文献7

  • 1Fatourechi M,Bashashati A,Ward R K,et al.Birch.EMG and EOG artifacts in brain computer interface systems:A survey[J].Clinical Neurophysiology, 2007,118 : 480-494.
  • 2Shoker L,Sanei S,Wang W,et al.Removal of eye blinking artifact from the electroencephalogram,incorporating a new constrained blind source separation algorithm[J].Medical & Biological Engineering & Computing,2005,43:290-295.
  • 3Li Ruijiang,Principe J C.Blinking artifact removal in cognitive EEG data using ICA[C]//Proceeding of the 28th IEEE EMBS Annual International Conference,New York, USA,2006:5273-5276.
  • 4Xue Zhaojun,Li Jia,Li Song,et al.Using ICA to remove eye blink and power line artifacts in EEG[C]//First International Conference on Innovative Computing,Information and Control,Beijing, China, 2006.
  • 5刘长生,唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J].计算机工程与应用,2007,43(17):230-232. 被引量:13
  • 6吴小培,叶中付,沈谦,张道信.在线Infomax算法及其在长记录脑电消噪中的应用[J].电路与系统学报,2005,10(5):83-88. 被引量:3
  • 7Clercq W D,Vergult A,Vanrumste B,et al.Canonical correlation analysis applied to remove muscle artifacts from the Electroencephalogram[J].IEEE Transactions on Biomedical Engineering,2006,53(12):2583-2587.

二级参考文献20

  • 1徐庐生,李峰,华蕴博,丁德云.脑电图遥测分析系统[J].中国医学物理学杂志,1997,14(2):112-113. 被引量:6
  • 2A J Bell. An information-maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995, 7(4): 1129-1159.
  • 3T W Lee. Independent Component Analysis-Theory and application [M]. kluwer Academic, Boston, 1998, 27-64.
  • 4N Delfosse. Adaptive blind separation of independent sources: A deflation approach [J]. Signal Processing, 1995, 45(1): 59-83.
  • 5S I Amari. Supereffeciency in blind source separation [J]. IEEE Trans. on Signal Processing, 1999, 47(3): 936-944.
  • 6Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Trans on Neural Networks, 1999, 10(3): 626-634.
  • 7Scott Making. Independent Component Analysis of Electroencephalographic Data. Advances in Neural Information Processing Systems 8 [M]. MIT Press, Cambridge MA, 1996. 145-151.
  • 8Richard Vigario, et al. Independent Component Approach to the Analysis of EEG and MEG Recording [J]. IEEE Trans. on BME, 2000, 47(5): 589-593.
  • 9Rao K D,Reddy D C.On-line method of enhancement of electroencephalogram in presence of electro-oculogram artifacts using non-linear recursive least squares technique[J].Medical Biology and Engineering Computation,1995,33:488-491.
  • 10Woestenburg J C,Verbaten M N,Slangen J L.The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain[J].Biological Psychology,1983,16:127-147.

共引文献14

同被引文献110

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部