期刊文献+

基于快速非均匀平面波算法和混合粒子群算法的目标外形反演

The Targets Shape Reconstruction Based on the Fast Inhomogeneous Plane Wave Algorithm and Hybrid Particle Swarm Optimization
下载PDF
导出
摘要 提出了一种能同时重构多个导体目标外形的新方法—混合粒子群算法,利用快速非均匀平面波算法加速求解电磁散射问题,以测量的散射场和计算散射场偏差作为目标函数,将待优化变量设置为目标的截面轮廓近似多边形的矢径参数,通过混合粒子群算法对待优化变量进行优化,使目标函数达到最小值来对自由空间中的散射体进行电磁成像。仿真结果表明:混合粒子群算法简单、通用,比多向粒子群算法具有更好的收敛性能和成像精度,具有较强的抗随机噪声干扰能力。 A novel approach for microwave imaging hybrid particle swarm optimization (HPSO) is put of the perfectly conducting objects in free space using forward. A scattering model based on the fast inhomogeneous plane wave algorithm (FIPWA) is used to solve the scattering problem. The error between measured scattering data and computed scattering data is considered as the object function. The shape function of conductor is approximated by polar coordinates parameters. The inverse scattering problem is transferred into an optimization problem by minimizing the object function with polar coordinates parameters being optimization parameters, which is solved by hybrid particle swarm optimization. Comparisons of the multi-phase particle swarm(MPPSO) and hybrid particle swarm optimization are carried out. The results show that hybrid particle swarm optimization is simple, versatile, and has the excellent performance of better convergence and imaging precision, more robust anti-jamming.
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2009年第5期1209-1213,969,共6页 Nuclear Electronics & Detection Technology
关键词 电磁逆散射 多相粒子群算法 混合粒子群算法 收敛 快速非均匀平面波算法 Electromagnetic inverse scattering, MPPSO, HPSO, Convergence, FIPWA
  • 相关文献

参考文献5

  • 1Pu Qing. Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy[J]. IEEE Trans. Antennas Propagat. 2003, 51 (6) : 1251-1262.
  • 2Buthainah Sabeeh No' man Al-kazemi. Multi-Phase Particle Swarm Optimization[J]. Syracuse University,May, 2002.
  • 3Timothy A. Charnecki. Automatitic Program Generation Based on the Swarm[J]. Utah State University, Logan, 2004.
  • 4Buthainah Al-kazemi and Chilukuri K. Mohan. Mud-Phase Discrete Particle Swarm Optimization. Proe. The Fourth International Workshop on Frontiers in Evolutionary Algorithms (FEA 2002 ), 2002.
  • 5P. J. Angeline. Evolutionary Optimization Versus Particle Swarm Optimization. Philosophical and Performance Differences. Proc. Evolutionary Program-ming VII (EP98) LNCS 1447: 601-610, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部