期刊文献+

均匀线阵互耦矩阵非Toeplitz条件下的DOA估计 被引量:5

of Arrival(DOA) Estimation Under Non-Toeplitz Mutual Coupling Matrix of ULA
下载PDF
导出
摘要 理想条件下,均匀线阵的互耦矩阵可用一带状、对称Toeplitz矩阵进行建模。然而实测数据表明,均匀线阵的互耦矩阵具有对称性,但不具有Toeplitz性,此时仍按理想情况建模,会导致DOA估计不准甚至完全失效。基于RBF神经网络,提出了互耦矩阵非Toeplitz条件下的DOA估计方法。算法利用了信号协方差矩阵的对称性和对角线元素不含信号DOA信息的特点,取协方差矩阵的上三角的元素作为网络输入,不仅减少了网络的输入数,同时还提高了与阵列法线夹角60°外的DOA估计精度。实验仿真结果验证了算法的有效性。 A banded symmetric Toeplitz matrix provides a satisfactory model for the mutual coupling of ULA(Uniform Linear Array) under the ideal condition. But in fact, it is known from the practical data that the mutual coupling of ULA is symmetric but not Toeplitz. If mutual coupling matrix(MCM) is still modeled under the ideal condition, the estimated values of DOA will he inaccurate and even invalid. Based on RBF neural network, a kind of DOA estimation algorithm under non Toeplitz MCM is proposed in this paper. The characteristics of symmetry property and no DOA information on the diagonal of the correlation matrix are utilized to extract the upper triangular half of the matrix as the input vectors. This method not only reduces the dimension of the input vectors but also improves the DOA estimation precision out of 60 degree of the bevel between the signal and normal line of the array. Simulation results demonstrate that the proposed algorithm is efficient and valid.
出处 《雷达科学与技术》 2009年第5期358-364,共7页 Radar Science and Technology
基金 国家自然科学基金(No.60601016)
关键词 非Toeplitz校正 RBF网 DOA估计 阵列信号处理 non-Toeplitz calibration RBF nets DOA estimation array signal processing
  • 相关文献

参考文献4

二级参考文献27

  • 1[1]Gupta I J, Ksienski A K. Effect of mutual coupling in the performance of adaptive arrays. IEEE Trans on AP, 1983, 31(6): 785~791
  • 2[2]Yeh C, Leou M, Ucci D R. Bearing estimations with mutual coupling present. IEEE Trans on AP, 1989,37(10): 1332~1335
  • 3[3]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEE Trans on AP, 1991,39 (3): 273~284
  • 4[4]See C M S, Poh B K. Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Trans SP, 1999, 47(4): 1133~1137
  • 5[5]Svantesson T. Mutual coupling compensation using subspace fitting. In: Proc 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. 2000. 494 ~498
  • 6[6]Svantesson T. Modeling and estimation of mutual coupling in a uniform linear array of dipoles. In: Proc ICASSP'99 Phoenix, USA, Mar 1999. 2961 ~2964
  • 7[7]Svantesson T. The effects of mutual coupling using a linear array of thin diploes of finite length. In: Proc
  • 8[8]th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, Portland, USA, Sep 1998.232~2358.Jaffer A G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration. In:Proc IEEE Radar Conference 2002. 294~297
  • 9[9]Jaffer A G Constrained mutual coupling estimation for array calibration. In: Proc 35th Asilomar Conference on Signals, Systems and Computers. California: Pacific Grove, 2001.1273~1277
  • 10[10]Schmidt R O. Multiple Emitter Location and Signal Parameter Estimations. IEEE Trans AP Mar, 1986, 34(3): 276~280

共引文献53

同被引文献34

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2WANGBuhong,WANGYongliang,CHENHui,GUOYing.Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J].Science in China(Series F),2004,47(6):777-792. 被引量:17
  • 3贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 4李超.再论循环码的周期分布[J].通信学报,1997,18(8):28-32. 被引量:9
  • 5SEE C M S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases[J]. Electronics Letters, 1994, 30(5): 373-374.
  • 6SELLONE F, SERRA A. A novel mutual coupling compensation algorithm for uniform and linear arrays[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 560-573.
  • 7WlJN-HOLDS S J, VEEN A J. Multisource self-calibration for sensor arrays[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3512-3522.
  • 8QI C, WANG Y, ZHANG Y, CHEN H. DOA estimation and self- calibration algorithm for uniform circular array[J]. Electronics Letters, 2005, 41(20): 1092-1094.
  • 9XIANG L, YE Z, XU X, et al. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling[J], lET Microwaves, Antennas and Propagation, 2008, 2(3): 281-287.
  • 10GOOSSENS R, ROGIER H. A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 841-849.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部