期刊文献+

纳米添加剂铁路轴承润滑脂摩擦试验数据分析 被引量:2

Analysis of Friction Experiment Data of Nano-additive Railway-bearing Lubricating Grease
下载PDF
导出
摘要 目前铁路轴承的损坏主要是由于润滑脂的失效引起轴承各部件间的急剧摩擦,这直接导致抱轴的发生,严重影响铁路的安全运输。在4号锂基润滑脂中加入不同纳米材料,配制成不同比例的样品,通过摩擦试验记录试验数据,运用乏信息理论估计每组试验数据的真值,发现不同材料和不同比例的纳米材料作为添加剂对钢球的减摩效果是不同的,纳米氧化锆材料加入到润滑脂中的减摩效果是很明显的,纳米铜材料反而会增大摩擦,不适合作为润滑脂的减摩添加剂。 Currently the main cause for damage of railroad bearings is that failure of lubricating grease leads to rubbing sharply among the parts of the bearing,which directly causes axle suspension and seriously affects transport safty.In this paper different nano materials are added to 4# lithium lubricating grease,and different proportion samples are prepared for friction exprinment.By using poor information theories the true value of each group datum are estimated,which shows that friction-reducing effect is different with various nano-additive and proportion.Friction reducing effect is obvious when nano-ZrO2 is used as additive.By contrary,nano-Cu as additive only increases friction and isn′t suitable for friction reducing additive of lubricating grease.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2009年第5期9-12,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(50375011) 河南科技大学博士科研启动基金项目(09001318)
关键词 铁路轴承 摩擦 润滑脂 估计真值 数据融合 Railway-bearing Friction Lubricating grease Estimate true value Data fusion
  • 相关文献

参考文献6

二级参考文献18

  • 1冯蕴雯,黄玮,吕震宙,宋笔锋,冯元生.极小子样试验的半经验评估方法[J].航空学报,2004,25(5):456-459. 被引量:29
  • 2谭黎明.室温渗硫在汽车零件上的应用[J].金属热处理,1993,18(4):44-45. 被引量:1
  • 3黄玮,冯蕴雯,吕震宙.极小子样试验的虚拟增广样本评估方法[J].西北工业大学学报,2005,23(3):384-387. 被引量:39
  • 4Nair V N, Tang B, Xu L. Bayesian inference for some mixture problems in quality and reliability [J]. Journal of Quality Technology, 2001,33(1 ) :16 -27.
  • 5Peretti C D. Bilateral Bootstrap test for long memory: an application to the silver market [J]. Computational Economics,2003,22(2) :187 -212.
  • 6Efron B, Tibshirani R J. An Introduction to the Bootstrap[M]. London: Chapman and Hall, 1993.
  • 7Kijewski T, Kareem A. On the reliability of a class of system identification techniques: insights from Bootstrap theory [J].Structural Safety, 2002,24(4) : 261 -280.
  • 8Heckelei T, Mittelhammer R C. Bayesian Bootstrap multivariate regression[J]. Journal of Econometrics, 2003,112(2).
  • 9Iglesias M C, Manteiga W G. Bootstrap for conditional distribution function with truncated and censored data[J]. Annual Institute Statistic Math, 2003,55(2) :331 - 357.
  • 10周遂亮 于德州.室温水溶液渗硫[J].金属热处理,1999,(6):43-45.

共引文献77

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部