期刊文献+

Spin Relaxation of Electrons in Single InAs Quantum Dots

Spin Relaxation of Electrons in Single InAs Quantum Dots
原文传递
导出
摘要 By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction. By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.
机构地区 SKLSM
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第11期177-179,共3页 中国物理快报(英文版)
关键词 Condensed matter: electrical magnetic and optical Semiconductors Surfaces interfaces and thin films Nanoscale science and low-D systems Condensed matter: electrical, magnetic and optical Semiconductors Surfaces, interfaces and thin films Nanoscale science and low-D systems
  • 相关文献

参考文献15

  • 1Meier F and Zakhaxchenya B 1984 Optical Orientation: Modem Problems in Condensed Matter Sciences (Amsterdam: North-Holland) vol 8.
  • 2Chamaxro M, Courdon C and Lavallard P 1996 J. Luminescence 70 222.
  • 3Paillard M, Marie X, Renucci P, Amand T, Jbeli A and Gerard J M 2001 Phys. Rev. Lett. 86 1634.
  • 4Tartakovskii A I, Wright T, Russell A, Fal'ko V I, Van'kov A B, Skiba-Szymanska J, Drouzas I, Kolodka R S, Skolnick M S, Fry P W, Tahraoui A, Liu H Y and Hopkinson M 2007 Phy. Rev. Lett. 98 026806.
  • 5Kaji R, Aadachi S, Sasakura H and Muto S 2008 Phys. Rev. B 77 115345.
  • 6Lai C W, Maletinsky P, Badolato A and Imanmoglu A 2006 Phys. Rev. Lett. 96 167403.
  • 7Imamoglu A, Knill E, Tian L and Zoller P 2003 Phys. Rev. Lett. 91 017402.
  • 8Huang S S, Niu Z C, Ni H Q, Xiong Y H, Zhan F, Fang Z D and Xia J B 2007 J. Cryst. Growth 301 751.
  • 9Warming T, Siebert E, Schliwa A, Stock E, Zimmermann R and Bimberg D 2009 Phys. Rev. B 79 125316.
  • 10Bayer M, Ortner G., Stern O, Kuther A, Gorbunov A A, Forchel A, Hawrylak P, Fafard S, Hinzer K, Reinecke T L, Walck S N, Reithmaier J P, Klopf F and Schafer F 2002 Phys. Rev. B 65 195315.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部