期刊文献+

New approaching condition for sliding mode control design with Lipschitz switching surface 被引量:2

New approaching condition for sliding mode control design with Lipschitz switching surface
原文传递
导出
摘要 In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov's differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov's criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lips- chitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method. In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov's differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov's criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lips- chitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method.
出处 《Science in China(Series F)》 2009年第11期2032-2044,共13页 中国科学(F辑英文版)
关键词 sliding mode control Filippov solution contingent cone linear Lipschitz switching surface sliding mode control, Filippov solution, contingent cone, linear Lipschitz switching surface
  • 相关文献

参考文献5

二级参考文献12

  • 1高为炳.变结构控制的理论及设计方法[M].北京科学出版社,1998..
  • 2林岩 毛剑琴 等.具有零辅助误差的鲁棒变结构模型参数自适应控制.第三届全球华人智能控制与智能自动化大会论文集[M].合肥,2000..
  • 3[1]Kwan C M. Sliding mode control of linear systems with mismatched uncertainties. Automatica, 1995,31:303~307
  • 4[2]Fujisaki Y, Yasuda K. Sliding Mode Control of Uncertain System.In:Proc. IMACS/SICE International Symposium on Robotics, Mechatronics and Manufacturing System'92, Kobe,9.Japan:1992.16~20
  • 5[3]Yamamoto S, Kimura H. Quadratic stabilization control via H∞ controller and tuning up by time-varying gain. Trans.Soc.Ins.Contr.Eng.,1996,32:486~494
  • 6Chong S,Proc.of IEEE Int.Workshop on Variable Structure Systems,1996年,31页
  • 7Yu X,Int J Control,1996年,64卷,6期,1165页
  • 8Jiang Z P,Proc of 30th IEEE Conf on Decision and Control,1991年,2482页
  • 9Xu Jianxin,Int J Control,1996年,65卷,3期,409页
  • 10林岩,第三届全球智能控制与智自动化大会论文集,2000年

共引文献47

同被引文献19

  • 1王鹏,陈万春,殷兴良.空空导弹大角度姿态反作用喷气控制[J].航空学报,2005,26(3):263-267. 被引量:14
  • 2魏爱荣,赵克友.执行器饱和不确定线性系统的分析和设计[J].电机与控制学报,2005,9(5):448-451. 被引量:10
  • 3杨盐生.[D].大连:大连海事大学,1999.
  • 4贾欣乐 杨盐生.船舶运动数学模型[M].大连:大连海事大学出版社,1998..
  • 5Fossen T I. Guidance and control of ocean vehicles[M]. New York: Wiley, 1994: 105-114.
  • 6LI Junfang, LI Tieshan, FAN Zhong-zhou et al. Robust adaptive backstepping design for course-keeping control of ship with parameter uncertainty and input saturation[C]//Intemational Conference of Soft Computing and Patteha Recognition. Dalian, China, 2011: 63-67.
  • 7Francesca A, Domenico D. Asymptotic stability of continuous-time systems with saturation nonlinearities[J]. Systems & Control Letters, 1996, 29(3): 175-180.
  • 8Francesca Albertini, Domenico D'Alessandro, Andrew D, B. Paice. Further conditions on the stability of continuous time systems with saturation[J]. IEEE Transactions on Circuits and Systems--I: Fundamental Theory and Applications, 2000, 47(5): 723-729.
  • 9Tarbouriech S, Turner M. Anti-windup design: an overview of some recent advances and open problems[J]. IET control theory & applications, 2009, 3(1): 1-19.
  • 10Hu T, Teel A R, Zaccarian L. Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance[J]. Automatica, 2008, 44(2): 512-519.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部