期刊文献+

监督分类和目视修改相结合在高分辨率遥感影像中的应用 被引量:10

Application of Supervised Classification and Visual Revision in High Resolution Remote Sensing Image
下载PDF
导出
摘要 用计算机对遥感影像进行地物类型识别是遥感数字图像处理的一个重要内容,传统的地物分类一般采用MSS、TM和Spot等遥感影像作为数据源。与MSS、TM和Spot等传统遥感影像相比,QuickBird等高分辨率影像数据量大,混合像元减少、地物信息增大,能够被应用于土地分类。在监督分类中,对于达不到精度要求的模板,通常采用重新选择训练区的方法来进行修正,而本文采用目视修改的方法来对监督分类进行补充。本文方法可以改正初次分类中的误分、混分地物,使其归到正确的地物分类中,显著提高了土地分类的精度。为了验证算法的有效性,利用ERDAS IMAGING遥感图像处理软件进行实验和精度评价。实验结果表明,监督分类和目视修改相结合的地物分类方法可以显著提高图像的分类精度。 Using computer to recognize the type of the ground object on the remote sensing image is an important part of the remote sensing digital image processing. The traditional classification of ground object generally uses remote sensing images, such as MSS, TM and Spot, as data source. Compared with MSS, TM, Spot and other traditional remote sensing images, QuickBird and other high-resolution images have advantages of larger amount of data, reduced mixed-pixel, and increased ground object information, and therefore can be used in the land classification. In the supervised classification, the method of reselecting the training zone is usually adopted to revise the template of which the precision is not high enough. But in this paper, we use the visual revision method to supplement the supervised classification. This method can correct the error and the mixed classification of the ground object in the initial classification brining the ground object back to the correct classification, and significantly improve the accuracy of the land classification. To verify the effectiveness of the algorithm, the experiment and accuracy assessment are carried out using ERDAS IMAGING remote sensing image processing software. The experimental results show that the image classification accuracy can be greatly improved by using the ground object classification method which combines the supervised classification and visual revision.
出处 《国土资源信息化》 2009年第5期37-40,48,共5页 Land and Resources Informatization
关键词 监督分类 目视修改 遥感影像 分类模板 精度评价 Supervised classification Visual revision Remote sensing image Classification template Accuracy assessment
  • 相关文献

参考文献4

二级参考文献29

  • 1杨晓明,黎镇湘.应用分层采样技术进行大面积遥感图像分类的研究[J].北京林业大学学报,2003,25(S1):33-35. 被引量:3
  • 2刘伟,濮励杰,李乔.城市边缘区土地利用的研究方向探讨[J].现代城市研究,1998,13(3):58-61. 被引量:5
  • 3翟辉琴,王明孝,张保明,解志刚.一种利用数学形态学提取遥感影像水域的方法[J].遥感信息,2005,27(1):18-20. 被引量:4
  • 4.广州年鉴[M].广州:广州年鉴社,2002..
  • 5彭望禄译.遥感与图像解译(第四版)[M].北京:电子工业出版社,2003..
  • 6Tucker C.Red and Photographic Infrared Linear Combination for Monitoring Green Vegetation[ J].Remote Sensing of Environment,1979,8:127~150.
  • 7Gutman G.Vegetation Indices from AVHRR:An Update and Future Prospects[J].Remote Sensing of Environment,1991,35:121~136.
  • 8Bruzzone L.Detection of Changes in Remotely-sensed Images by the Selective Use of Multi-spectral Information[J].Int J Remote Sensing,1997,18(18):3883~3888.
  • 9Olsson H.Regression Functions for Multitemporal Relative Calibration of Thematic Mapper Data Over Boreal Forest[ J].Remote Sensing of Environment,1993,46 (1):89~ 102.
  • 10广东省植物研究所.广东植被[M].北京:科学出版社,1996..

共引文献46

同被引文献100

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部