摘要
本文从修改后的系统特征方程出发,导出了反映系统主、副自由度上变形关系的动力缩聚矩阵的控制方程,并给出了求解该方程的迭代解法。与已有的动力缩聚迭代法相比,该方法的收敛速度最高。本文还提出了一种迭代收敛准则,该准则可大大减少计算效率很低的Rayleigh-Ritz操作的使用,从而使得该方法的迭代效率较高。
A control equation of dynamic condensation matrix which relates the deformations associated with the master and slave degrees of freedom is derived directly from a modified eigenvalue equation. An iterative scheme is given for solving the equation at the same time. Compared with all the iterative methods of dynamic condensation proposed in the past, the present approach has much higher accuracy. A new convergent criterion is also presented here. It is unnecessary to adopt Rayleigh-Ritz procedure in every iteration when using this criterion. This makes the proposed method computationally efficient.
出处
《振动与冲击》
EI
CSCD
1998年第3期15-18,共4页
Journal of Vibration and Shock
关键词
动力缩聚
模态分析
有限元建模
结构动力学
dynamic condensation, model reduction, modal analysis, finite element modeling