期刊文献+

A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems 被引量:1

A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems
下载PDF
导出
摘要 We study preconditioning techniques used in conjunction with the conjugate gradient method for solving multi-length-scale symmetric positive definite linear systems originating from the quantum Monte Carlo simulation of electron interaction of correlated materials. Existing preconditioning techniques are not designed to be adaptive to varying numerical properties of the multi-length-scale systems. In this paper, we propose a hybrid incomplete Cholesky (HIC) preconditioner and demonstrate its adaptivity to the multi-length-scale systems. In addition, we propose an extension of the compressed sparse column with row access (CSCR) sparse matrix storage format to efficiently accommodate the data access pattem to compute the HIC preconditioner. We show that for moderately correlated materials, the HIC preconditioner achieves the optimal linear scaling of the simulation. The development of a linear-scaling preconditioner for strongly correlated materials remains an open topic. We study preconditioning techniques used in conjunction with the conjugate gradient method for solving multi-length-scale symmetric positive definite linear systems originating from the quantum Monte Carlo simulation of electron interaction of correlated materials.Existing preconditioning techniques are not designed to be adaptive to varying numerical properties of the multi-length-scale systems.In this paper, we propose a hybrid incomplete Cholesky(HIC) preconditioner and demonstrate its adaptivity to the multi-length-scale systems.In addition,we propose an extension of the compressed sparse column with row access(CSCR) sparse matrix storage format to efficiently accommodate the data access pattern to compute the HIC preconditioner.We show that for moderately correlated materials,the HIC preconditioner achieves the optimal linear scaling of the simulation.The development of a linear-scaling preconditioner for strongly correlated materials remains an open topic.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第4期469-484,共16页 高等学校计算数学学报(英文版)
基金 supported in part by the US National Science Foundation grant 0611548 in part by the US Department of Energy grant DE-FC02-06ER25793
关键词 PRECONDITIONING multi-length-scale incomplete Cholesky factorization quantum MonteCarlo simulation. 线性方程组 预处理技术 对称正定 混合集成电路 品质 电子相互作用 稀疏矩阵 共轭梯度法
  • 相关文献

参考文献10

  • 1Z.BAI,,W.CHEN,,R.SCALETTAR,,I.YAMAZAKI.Robust and efficient numerical linear algebra solvers and applications in quantum mechnical simulations[].Proc The Fourth International Congress of Chinese Mathematician(ICCM).2007
  • 2Z.BAI,,W.CHEN,,R.T.SCALETTAR,,I.YAMAZAKI.Lecture notes on advances of numerical methods for quantum Monte Carlo simulations of the Hubbard model[].CSE--Department of Computer ScienceUniversity of CaliforniaDavis.2007
  • 3S.BALAY,,K.BUSCHELMAN,,W.D.GROPP,,D.KAUSHIK,,M.KNEPLEY,,L.C.MCINNES,,B.F.SMITH,,H.ZHANG.PETSc User‘s Manual[].technical Report ANL-/-Revision Argonne National Laboratory.2002
  • 4V.EIJKHOUT.The‘weighted modification‘incomplete factorization method[].LAPACK Working Note UT-CS--Computer Science DepartmentUniversity of Tennessees.1999
  • 5R.T.SCALETTAR,,D.J.SCALAPINO,,R.L.SUGAR,,D.TOUSAINT.A hybrid-molecular dynamics algorithm for the numerical simulation of many electron systems[].Physical Review B Condensed Matter and Materials Physics.1987
  • 6I.YAMAZAKI.High-quality preconditioning techniques for multi-length-scale symmetric positive definite matrices and their applications to the hybrid quantum Monte Carlo simulation of the Hubbard model[]..2008
  • 7AjizM A andJenningsA.A robust incompleteCholeski- conjugate gradient algorithm[].Interna-tional journal for numerical methods in engineering.1984
  • 8Benzi,M,Tuma,M.A robust incomplete factorization preconditioner for positive definite matrices[].Numerical Linear Algebra with Applications.2003
  • 9Benzi,M,Tuma,M.A robust preconditioner with low memory requirements for large sparse least square problems[].SIAM Journal on Scientific Computing.2003
  • 10Duff,I. S.A survey of sparse matrix research[].Proceedings of the IEEE.1977

同被引文献8

  • 1同济大学应用数学系.线性代数[M].北京:高等教育出版社,2003,7..
  • 2Laliberte A S,Rango A. Texture and Scale in Object-based Analysis of Subdecimeter Resolution Unmanned Aerial Vehi- cle (UAV) Imagery[ J ]. Geoscience and Remote Sensing, 2009,761 - 769.
  • 3Laliberte A S, Herrick J E, Rango A, et al. Acquisition, or Thorectification, and Object- based Classification of Un- manned Aerial Vehicle (UAV) hnagery for Rangeland Moni- toring[ J ]. Photogrammetric Engineering & Remote Sensing, 2010,661 - 672.
  • 4A sparse matrix model-based optical proximity correction al- gorithm with model-based mapping between segments and control sites [ J ]. Journal of Zhejiang University-Science C ( Computers & Electronics ), 2011,436 - 442.
  • 5N. S. Mera,L. Elliott,D. B. Ingham. On the use of genet- ic algorithms for solving ill- posed problems [ J ]. Inverse Problems in Engineering,2003,105 - 121.
  • 6吴杰,李明峰,余腾.测量数据处理中病态矩阵和正则化方法[J].大地测量与地球动力学,2010,30(4):102-105. 被引量:19
  • 7鲁恒,李永树,何敬,任志明.无人机低空遥感影像数据的获取与处理[J].测绘工程,2011,20(1):51-54. 被引量:93
  • 8Yi-zhou HE,Xi CHEN,Hao WANG.Modeling correlated samples via sparse matrix Gaussian graphical models[J].Journal of Zhejiang University-Science C(Computers and Electronics),2013,14(2):107-117. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部