期刊文献+

基于Rayleigh噪声统计分布的有音区检测 被引量:3

VOICE ACTIVITY DETECTION IN NOISE SPECTRUM DOMAIN UNDER RAYLEIGH DISTRIBUTION
下载PDF
导出
摘要 依据噪声能量谱密度(PSD)分布的拖尾特性,本文采用瑞利(Rayleigh)分布表示噪声能量谱密度的分布,推导出基于Rayleigh分布的新判决阈值更新表达式,并提出一种改进的有音区检测(VAD)算法。由于Rayleigh分布下虚警概率具有解析表达式,从而避免了计算逆互补误差函数,降低了算法的复杂度。实验结果表明,在非平稳噪声环境下,其性能指标值优于文献[8]的算法。 In this paper we propose an improved voice activity detection (VAD) algorithm by modeling the noise power spectrum density (PSD) distribution with Rayleigh model. It is well known that the probability density function (PDF) of noise PSD obtained from Welch approach has the ' tail' characteristic, It can be modeled more accurately by using Rayleigh distribution. Under the Rayleigh distribution a new expression for the decision threshold update is derived. Due to the analytical expression of the false alarm probability, the computation of the inverse complementary error function is avoided and the computational complexity of the proposed VAD is reduced. Experimental results show that the proposed VAD outperforms the VAD scheme mentioned in [ 5 ] under non-stationary noise environments.
出处 《信号处理》 CSCD 北大核心 2009年第11期1809-1813,共5页 Journal of Signal Processing
基金 国家自然科学基金资助项目(No.60575006) 广州市留学人员科技创业资助计划(No.2006V11I0831)资助项目
关键词 统计有音区检测 自适应判决阈值 瑞利分布 算法复杂度 Statistical voice activity detection adaptive decision threshold Rayleigh distribution computational complexity
  • 相关文献

参考文献11

  • 1ITU-T Recommendation G. 729,Annex B. , 1996.
  • 2F. Beritelli, S. Casale, and A. Cavallaro, "A robust vouce activity detector for wireless communications using soft omputing", IEEE J. Select. Areas Commun. , vol. 16, no. 9, pp. 1818-1829, Dec. 1998.
  • 3J. Sohn, N. S. Kim, and W. Sung, "A statistical modelbased voice activity detection" ,IEEE Signal Process. Lett., vol. 6,no. 1 ,pp. 1-3 ,Jan. 1999.
  • 4S. Gazor, W. Zhang,"A soft voice activity detector based on a Laplacian-Gasussian model", IEEE Trans. ASSP, vol. 11, no. 5, pp. 498-505, Sep. 2003.
  • 5J. -H. Chang, J. W. Shin, and N. S. Kim, "Likelihood ratio test with complex Laplacian model for voice activity detection", in Proc. Enrospeech, Geneva, Switzerland, pp. 1065- 1068, Aug. 2003.
  • 6J. W. Shin, H. J. Kwon, S. H. Jin, and N. S. Kim, " Voice Activity Detection Based on Conditional MAP Criterion", IEEE Signal Processing Letters, Vol. 15, pp. 257- 260, Feb. 2008.
  • 7J. -H. Chang, N. S. Kim, S. K. Mitra," Voice activity detection based on multiple statistical models", IEEE Trans. SP, vol. 54 ,no. 6 ,pp. 1965-1976 ,Jun. 2006.
  • 8A. Davis, S. Nordholm, and R. Togneri, "Statistical voice activity detection using low-variance spectrum estimation and an adaptive threshold", IEEE Trans. on Audio, Speech, and Language Processing, pp. 412-424, Mar. 2006.
  • 9Y. Ephraim, D. Malah. "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator" ,IEEE Trans. ASSP,vol. 32,no. 6,pp. 1109 - 1121, Dec. 1984.
  • 10C. Breithaupt and R. Martin, "Voice activity detection in the DFT domain based on a parametric noise model", Proc. of the Int. Worksh. of Acoustic Echo and Noise Control ( IWAENC ), Paris, 1-4 Sep. 2006.

同被引文献21

  • 1Huang H J, Su S L, Chen J H. Design and performance analysis for data transmission in GSM/GPRS system with voice activity detection[J]. IEEE Trans. Veh. Technology, 2002, 51(4): 648-656.
  • 2Solm J, KJm N S, Sung W. A statistical model-based voice activity detection[j]. IEEE Signal Processing Letters, 1999, 6(1): 1-3.
  • 3Cho Y D, Kondoz A. Analysis and improvement of a statistical model-based voice activity detector[J]. IEEE Signal Processing Letters, 2003,8(10) : 276-278.
  • 4Ramirez J, Segura J C, Benitez C, et al. A statistical voice activity detection using a multiple observation likelihood ratio test[J]. IEEE Signal Processing Letters, 12(10): 689-692.
  • 5Gazor S, Zhang W. A sott voice activity detector based on a laplacian-gasussian model[J]. IEEE Trans. on Audio, Speech, and Language Processing, 2003, 11 (5): 498-505.
  • 6Tahrnasbi R, Rezaei R, A sott voice activity detection using GARCH filter and variance gamma distribution[J]. IEEE Trans. on Audio, Speech, and Language Processing,2007,15(4): 1129-1134.
  • 7ITU-T Recommendation G.729, Annex B.[R], 1996.
  • 8Davis A, Nordholm S, Togneri 1L Statistical voice activity detection using low-variance spectrum estimation and an adaptive threshold[J]. IEEE Trans. on Audio, Speech, and Language Processing, 2006, 14(2): 412-424.
  • 9Stoica P, Sandgrcn N. Total-variance reduction via thtesholding: application to cepstral analysis[J]. IEEE Transactions on Signal Processing, 2007, 55(1): 66-72.
  • 10A silence compressionscheme for G.729 optimized for terminals conforming to ITU-T V.70. ITU-T Recommendation G 729 Annex B . 1996

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部