期刊文献+

气泡在幂律流体中长大过程的有限元数值模拟 被引量:1

FEM Based Numerical Simulation of Bubble Growth in Power-Law Liquid
下载PDF
导出
摘要 针对幂律型流体,建立了气泡在有限聚合物熔体内长大过程的有限元模型。气泡内气体遵守理想气体定律,且气泡边界处发泡剂浓度与气泡内气体压强符合亨利定律。采用Galerkin方法对有限元控制方程进行求解,并编写了计算程序。采用隐式差分法对扩散方程中的时间导数项进行离散,确保了数值计算的稳定性。采用幂律型流体本构关系描述聚合物流变性质,计算了不同材料的物性参数和工艺参数对气泡长大过程的影响。 The modeling for spherical bubble growth in a limited amount of power-law liquid was presented by using finite element based numerical simulation method. The gas inside the bubble obeys the ideal gas law, and the gas concentration at the bubble surface follows Henry' s law. A computer code was programmed to solve the equations with Galerkin method. Implicit difference scheme was used to discretize time in advection-diffusion equation. The rheology of the melt was described by power-law constitutive equation. In each incremental time step, grids were remeshed to acquire more accurate numerical results. The influence of the initial bubble radius, zero-shear viscosity, diffusion coefficient, solubility coefficient and surface tension on bubble growth was studied and presented respectively.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2009年第11期170-174,共5页 Polymer Materials Science & Engineering
基金 国家杰出青年基金资助项目(50425517) 山东省自然科学基金资助项目(Y2006F17)
关键词 气泡长大 幂律流体 数值模拟 有限元 bubble growth power-law fluid numerical simulation finite element
  • 相关文献

参考文献10

  • 1EVERITT S L, HARLEN O G, WILSON H J, et al. Bubble dynamics in viscoelastic fluids with application to reacting and non- reacting polymer foams[J]. J. Non-Newtonian Fluid Mechanics, 2003, 114: 83-107.
  • 2BEYDOKHTI K K, BEHRAVESH A H, AZDAST T. An experimental study on mechanical and microstructural properties of microcellular foams of ARS composites[J]. Iranian Polymer Journal, 2006, 15(7): 555-567.
  • 3徐志娟,何继敏,薛平,朱复华.工艺参数对PP挤出发泡泡孔结构的影响[J].塑料工业,2004,32(11):25-27. 被引量:6
  • 4肖兆新,管蓉,蒋亚静,李应林.加工参数对微孔PC泡孔性能的影响[J].塑料工业,2007,35(5):27-29. 被引量:9
  • 5田森平,吴舜英,彭响方.气泡长大过程的控制与模型分析[J].华南理工大学学报(自然科学版),1999,27(8):32-36. 被引量:1
  • 6刘小平,吴舜英,田森平,杨文明.发泡塑料气泡膨胀数学模型的简化及求解[J].材料科学与工程,2001,19(3):83-87. 被引量:4
  • 7AMON M, DENSON C D. A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles [J]. Polym. Eng. Sci., 1984, 24(13): 1028-1034.
  • 8JOSHI K, LEE J G, SHAFI M A, et al. Prediction of cellular structure in free expansion of viscoelastic media [ J ]. J. Appl. Polym. Sci., 1998, 67: 1353-1368.
  • 9OTSUKI Y, KANAI T. Numerical simulation of bubble growth in viscoelastic fluid with diffusion of dissolved foaming agent [ J ]. Polym. Eng. Sci., 2005, 45(9): 1277-1287.
  • 10LASTOCHKIN D, FAVELUKIS M. Bubble growth in a variable diffusion coefficient liquid[J]. Chem. Eng. J., 1998, 69: 21-25.

二级参考文献26

  • 1李双宝.非等温条件下挤出发泡成型与定型过程的研究[学位论文].华南理工大学工控系,1996..
  • 2李双宝,学位论文,1996年
  • 3吴舜英,泡沫塑料成型,1992年
  • 4Han C D,Polym Eng Sci,1981年,21卷,9期,518页
  • 5Villamiar C A,Polym Eng Sci,1978年,18卷,9期,699页
  • 6Klempner D, Fritsch K C.Handbook of Polymeric Foams and Foam Technology.Munich:Hanser Publishrs, 1991
  • 7Nojiri A, Sawasaki T, Koreeda T.US,4423293.1984
  • 8Munters C G,Tandberg J G.US,2023204.1935
  • 9Park J J, Katz L, Gaylord N G.US,5116881.1992
  • 10Naguib H E, Park C B, Panzer U,et al.Polym Eng Sci, 2002,42:1481

共引文献16

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部