期刊文献+

掺镱大功率光子晶体光纤激光器热效应分析 被引量:4

Thermal Effect in High-Power Yb^(3+)-Doped Photonic Crystal Fiber Lasers
原文传递
导出
摘要 数值模拟分析了大功率光子晶体光纤(PCF)激光器的温度场和热应力场。通过引入等效热传导率对光子晶体光纤结构进行简化,建立了光子晶体光纤激光器的三维温度场模型。利用有限元方法数值模拟得到了自然对流换热时光子晶体光纤中的温度场及光纤端面的热应力场,并对强制对流换热时光子晶体光纤的冷却效果进行了数值模拟分析。结果表明,对于选取的PCF,通过采取强制对流换热措施可以承受1000W的抽运功率而不会产生热效应损伤,如果需要通过提高抽运功率以获得更大功率的激光运转,则需要改变光纤的结构。 Temperature and thermal stress of high-power photonic crystal fiber (PCF) lasers were numerically simulated and analyzed. Equivalent thermal conductivity was introduced to simplify the structure of photonic crystal fiber,and then three dimensional temperature field model of photonic crystal fiber laser was established. By using the finite element method,the distributions of the temperature in fiber and the thermal stress in end-surface of fiber were numerically simulated and analyzed with natural and forced convection heat transfer,respectively. The results show that the selected PCF can support the pumped power of 1000 W under forced convection heat transfer,but improving the parameters of fiber is required to further enhance the output power by supporting higher pump power.
出处 《中国激光》 EI CAS CSCD 北大核心 2009年第11期2822-2826,共5页 Chinese Journal of Lasers
基金 瞬态光学与光子技术国家重点实验室开放基金资助课题
关键词 激光器 光子晶体光纤激光器 热效应 有限元 数值模拟 lasers photonic crystal fiber laser thermal effect finite element method numerical simulation
  • 相关文献

参考文献13

二级参考文献47

共引文献48

同被引文献37

  • 1J.Nilsson,S.-U.Alam,J.A.Alvarez-Chavez et al..High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers[J].IEEE J.Quantum Electron.,2003,39(8):987-993.
  • 2O.Schmidt,C.Wirth,I.Tsybin et al..Average power of 1.1 kW from spectrally combined,fiber-amplified nanosecond-pulsed sources[J].Opt.Lett.,2009,34(10):1567-1569.
  • 3S.Yoav,G.Yaakov,K.Tomer et al..Extractable energy from erbium-ytterbium co-doped pulsed fiber amplifiers and lasers[J] .Opt.Commun.,2008,281(5):1162-1178.
  • 4V.Philippov,J.K.Sahu,C.Codemard et al..All-fiber 1.15 mJ pulsed eye-safe optical source[C].SPIE,2004,5335:1-7.
  • 5Y.Jeong,J.K.Sahu,D.B.S.Soh.High-power tunable single frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source[J].Opt.Lett.,2005,30(22):2997-2999.
  • 6J.K.Sahu,Y.Jeong,D.J.Richardson.A 103W erbium/ytterbium co-doped large-core fiber laser[J].Opt.Commun.,2003,227(1-3):159-163.
  • 7D.A.Fishman,J.A.Nagel.Degradations due to stimulated Brillouin scattering in multigigabit internal-modulated fiber-optic systems[J].J.Lightwave Technol.,1993,11(11):1721-1728.
  • 8J.P.Koplow,D.A.V.Kliner,L.Goldberg.Single-mode operation of a coiled multimode fiber amplifier[J].Opt.Lett.,2000,25(7):442-444.
  • 9C.D.Brooks,F.Di Teodoro.High peak power operation and harmonic generation of a single-polarization,Yb-doped photonic crystal fiber amplifier[J].Opt.Commun.,2007,280(2):424-430.
  • 10T.A.Birks,J.C.Knight,P.St.J.Russell.Endlessly single-mode photonic crystal fiber[J].Opt.Lett.,1997,22(13):961-963.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部