期刊文献+

基于试探的变步长自适应粒子群算法 被引量:4

Self-adaptive Particle Swarm OPtimization Algorithm Based on Tentative Adjusting Step Factor
下载PDF
导出
摘要 针对粒子群算法容易陷入局部最优的缺陷,在分析惯性因子在算法中的作用机理的基础上,设计了一个根据种群多样性和进化代数自适应调节的惯性因子,并运用试探法,通过变换搜索步长,提高算法的局部搜索能力。最后,给出了3个典型函数的模拟例子,通过与APSO的对比结果显示,改进后的算法其性能得到极大提高。 Aiming at premature defect and poor result of Particle Swarm Optimization algorithm, a new Self-adaptive inertia factor was designed according to diversity in the population and generation number based on analysing inertia factor' s effect of algorithm. And through ploughing around adjusting step factors, the Particle's ability in local searching was enhanced. Three typical function tests were given. Comparing with APSO, the result indicates the effectiveness of this improvement.
出处 《计算机科学》 CSCD 北大核心 2009年第11期193-195,共3页 Computer Science
基金 国家自然基金(No.F0975026) 陕西省自然科学研究计划项目(No.2007f19)资助
关键词 粒子群算法 惯性因子 进化代数 Particle swarm optimization algorithm,Inertia factor,Generation number
  • 相关文献

参考文献3

二级参考文献32

  • 1[1]Chua, L., Yang, L., Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 1998, 35:1257 -1272.
  • 2[2]Chua, L., Yang, L., Cellular neural networks: Applications, IEEE Trans Circuits and Syst., 1988, 35:1273-1290.
  • 3[3]Roska, T., Chua, L., Cellular neural networks with nonlinear and delay-type template, Int. J. Circuit Theory Appl., 1992, 20: 461-481.
  • 4[4]Civalleri, P., Gilli, M., On stability of cellular neural networks with delay, IEEE Trans. Circuits Syst. (Ⅰ),1993, 40: 157-165.
  • 5[5]Jin, L., Nikiforuk, P., Absolute stability condition for discrete-time recurrent neural networks, IEEE Trans.Circuits Syst. (Ⅰ), 2000, 47: 571-574.
  • 6[6]Gilli, M., Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE Trans. Circuits Systems I, 1994, 41: 518- 528.
  • 7[7]Liao, X. X., Mathematical theorey of CNNs (Ⅰ), Science in China (in Chinese), Ser. A, 1994, 24:902 -910.
  • 8[8]Liao, X. X., Mathematical theorey of CNNs (Ⅱ), Science in China, Ser. A, 1995, 38: 542-551.
  • 9[9]Slot, K., Chua, L., Very low bit-rate video coding using cellular neural network universal machine, Int. J.Circuit Theory and Appl., 1999, 27: 153-169.
  • 10[10]Loncar, A., Tetzlaff, R., Cellular Neural Networks with nearly arbitrary nonlinear weight functions, Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and Their Applications,Piscataway: IEEE Press, 2000, 171-176.

共引文献142

同被引文献25

引证文献4

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部