期刊文献+

薄壁结构的加筋布局优化设计 被引量:28

Stiffener Layout Optimization of Thin Walled Structures
原文传递
导出
摘要 采用拓扑优化方法研究了薄壁结构的加筋布局优化问题。考虑到航空航天领域薄壁加筋结构的大量使用与结构形式的复杂性,提出了一种适用于有限元自由网格剖分的加筋设计新方法——几何背景网格法。该方法一方面通过定义几何背景网格的大小,实现了加筋设计域内任意离散网格沿加筋高度方向的布局参数化定义;另一方面,通过背景网格曲线坐标系下的定义,实现了三维曲面薄壁壳结构的加筋布局设计。采用该方法分别对平面结构与曲面薄壁结构进行了以结构刚度最大为目标的加筋优化设计。数值结果表明,所提出的方法能有效获得合理的加筋布局。 The stiffener layout optimization of thin walled structures is addressed in this article using a topology optimization method. Taking into consideration the complexities and wide applications of thin walled stiffened structures in aeronautic and astronautic fields, the article proposes a new geometric background grid (GBG) method suitable for stiffener design with unstructured finite element meshes. On the one hand, the stiffener definition is parameterized by this method using the background grid size. On the other hand, the definition of the background grid in the curve-lined coordinate system makes it possible to perform stiffener design of 3D curved shells. To validate the GBG method, it is applied to the stiffness maximization of plane and curved panels. Numerical examples show that this method can provide satisfactory results for stiffener layout.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第11期2126-2131,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50775184 10925212 90916027) 航空科学基金(2008ZA53007) 国家"973"计划(2006CB601205)
关键词 加筋设计 薄壁结构 拓扑优化 布局优化 几何背景网格 刚度最大 stiffener design thin walled structures topology optimization layout optimization geometric background grid (GBG) stiffness maximization
  • 相关文献

参考文献13

  • 1Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3) : 305-323.
  • 2Lam Y C, Santhikumar S. Automated rib location and optimization for plate structures[J]. Structural Multidisciplinary Optimization, 2003, 25(1): 35-45.
  • 3Luo J, Gea H C. A systematic topology optimization ap proaeh for optimal stiffener design[J]. Structural Optimization, 1998, 16(4): 280-288.
  • 4Krog L A, Olhoff N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives[J]. Computers and Structures, 1999, 72(4/5) : 535-563.
  • 5Afonso S M B, Belblidia F, Sienz J. Design of plates and shells using several optimization strategies[R]. AIAA- 2004- 4416, 2004.
  • 6Bojezuk D, Szteleblak W. Optimization of layout and shape of stiffeners in 2D structures[J]. Computers and Structures, 2008, 86(13/14): 1436-1446.
  • 7Zhou M, Fleury R, Shyy Y K, et al. Progress in topology optimization with manufacturing constrains[R]. AIAA- 2002-5614, 2002.
  • 8Seo Y D, Youn S K, Yeon J H, et al. Topology optimiza tion of inner wall stiffener for critical buckling loads of cylindrical containers[R]. AIAA- 2004-4418, 2004.
  • 9Kallassy A, Marcelin J L. Optimization of stiffened plates by genetic search[J]. Structural Optimization, 1997, 13 (2/3):134-141.
  • 10Fatemi J, Trompette P. Optimal design of stiffened plate structures[R]. AIAA- 2002 -1672, 2002.

二级参考文献3

  • 1Bendsoe M P, Kikuchi N. Generating Optimal Topologies in Structural Design Using Homogenization Method. Computer Methods in Applied Mechanics and Engineering, 1988,71(2): 197~224.
  • 2Rozvany G I N, Zhou M, Birker T. Generalized Shape Optimization without Homogenization. Structural Optimization, 1992,4:250~254.
  • 3Xie Y M, Steven G P. A Simple Evolutionary Procedure for Structural Optimization. Computer & Structure, 1993, 49: 885~896.

共引文献24

同被引文献181

引证文献28

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部