摘要
研究了紧致度量空间X上的连续满映射f:X→X的逆极限空间上移位映射σ:lim(X,f)→lim(X,f)的Φ-传递、Φ-混合与弱Φ-敏感性.证明了:σ是Φ-混合的当且仅当f是Φ-混合的,其中Φ是一个满的Furstenberg族;σ是Φ-传递的当且仅当f是Φ-传递的,σ是弱Φ-敏感的当且仅当f是弱Φ-敏感的,其中Φ是一个Furstenberg族.
Let Ф be a Furstenberg family. We research the dynamic properties of the shift map on the inverse limit space of a compact metric space and a sole bonding map. The following results are proved: the shift map on inverse limit space is Ф-transitive if and only if its sole bonding map is Ф-transitive; the shift map on inverse limit space is Ф-mixing if and only if its sole bonding map is Ф-mixing, where Ф is a full Furstenberg family; the shift map on inverse limit space is weakly Ф-sensitive if and only if its sole bonding map is weakly Ф-sensitive.
出处
《常熟理工学院学报》
2009年第10期26-28,共3页
Journal of Changshu Institute of Technology
基金
国家自然科学基金(10771079)
广州市属高校科技计划(08C016)资助项目