期刊文献+

基于AR(p)的卡尔曼滤波在GPS变形监测中的应用 被引量:4

Application of Kalman Filter Method Based on AR(p)Model in GPS Deformation Prediction
下载PDF
导出
摘要 由于AR(p)模型结构比较简单且计算比较方便,在变形分析中,目前常采用此模型建立变形模型。然而单纯的AR模型把模型参数作为定值,变形数据拟合误差及变形预测误差可能会比较大。介绍了将卡尔曼滤波引入AR模型,利用观测数据建立AR模型,即建立观测方程;以AR模型的参数为状态向量建立状态方程。从而形成动态系统的卡尔曼滤波函数模型,动态计算出AR模型的参数以便预测。此方法快速、实时,且占有较少内存,充分利用了AR模型和卡尔曼滤波二者的优点。 In GPS deformation prediction, we usually use AR(p) model to establish predict model for that the structure of AR(p) is simple and convenient in calculation. However, traditional AR(p) model put the model parameters as fixed values. Thus, the fitting errors of deformation data and the errors of deformation predict data can be comparatively large. This paper has mainly introduced the Kalman filter method based on AR(p) model. It can establish AR model by surveying data and construct the surveying equations. Then, it will build status equations using the parameters of AR model and finally form the dynamic system of Kalman filter. The parameters of AR model can be calculated in a movement in this method. The algorithm is fast and dynamic, it takes less calculation space and uses the advantages of AR model and Kalman Filter.
出处 《全球定位系统》 2009年第5期42-45,共4页 Gnss World of China
关键词 AR模型 卡尔曼滤波 变形监测 沉降观测 AR model Kalman Filter deformation prediction subsidence observation
  • 相关文献

参考文献5

二级参考文献11

共引文献99

同被引文献25

  • 1陆立,胡晓丽,王春华.用时间序列分析法进行建筑物沉降观测数据处理的研究[J].测绘科学,2004,29(6):76-78. 被引量:41
  • 2杨元喜.等价权原理──参数平差模型的抗差最小二乘解[J].测绘通报,1994(6):33-35. 被引量:58
  • 3邱冬炜,杨松林.城市地铁施工监测系统的探讨[J].测绘科学,2007,32(4):175-176. 被引量:12
  • 4潘红宇.时间序列分析及应用[M].北京:机械工业出版社.2011.
  • 5Gene H. Golub, Charles F. Van Loan, An analysis of the Total Least-Squares problem [ J ]. SIMA J. Numer. Anal. 17, 1980:883 -893.
  • 6Markovsky I, Van Huffel S. Overview of TotalLeast-squares Methods [ J ]. Signal Processing, 2007, 87(10):2 283-2 302.
  • 7Sehaffrin B, Felus Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quadratic Constraints [J]. Studia Geophysica et Geodaetica, 2009,53 ( 1 ) : 1-16.
  • 8Schaffrin B. A Note on Constrained Total Least Squares Estimation[J]. Linear Algebra and its Ap- plication, 2006,417 ( l ) : 245-258.
  • 9Van H S, Zha Hongyuan. The Total Least Squares Problem[J]. Handbook of Statistics, 1998:377-408.
  • 10Golub G H, Van Loan C F. An Analysia of the To- tal Least Squares Problem[J]. SIAM J Numer A- nal, 1980,17 : 883-893.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部