期刊文献+

跳变时滞系统非脆弱H_∞滤波器的设计 被引量:1

Design of Non-Fragile H_∞ Filter for Time-Delay Jump Systems
下载PDF
导出
摘要 文中针对一类具有马尔可夫跳变参数的It类型不确定随机时滞系统,讨论了此类系统的鲁棒非脆弱H∞滤波器的设计问题.在被控对象及滤波器同时存在不确定性的情况下,使闭环滤波误差系统的鲁棒随机指数均方稳定,且干扰抑制性能指标小于给定上界.针对被控对象和滤波器均存在加法摄动的情况,运用线性矩阵不等式(LMI)和It公式,给出了非脆弱滤波器存在的可解性条件.数值算例表明了该方法的有效性,并通过比较说明了非脆弱滤波器的优越性. In this paper, the robust non-fragile H∞ filtering is investigated for a class of uncertain stochastic Itotype time-delay system with Markov jump parameters, and a Markov jump filter is designed to guarantee the mean square stability of robust stochastic exponential of the closed-loop filter error system with uncertain controlled objects and filters, and to keep the disturbance attenuation level below a given upper bound. Moreover, by considering the additive perturbations of controlled objects and filters, the solvability condition for the existence of robust non-fragile filter is derived in the form of linear matrix inequality (LMI) and generalized Ito formula. The effectiveness of the proposed approach is then verified using a numerical example, and the superiority of the designed non-fragile filter is finally demonstrated through comparison.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期60-65,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60874037)
关键词 马尔可夫跳变 时滞系统 非脆弱滤波 加性增益摄动 线性矩阵不等式 Markov jump time-delay system non-fragile filtering additive gain perturbation linear matrix inequality
  • 相关文献

参考文献12

  • 1Palhares R M, Peres P LD. Robust H∞ filter design with pole constraints for discrere-time system [ J ]. Journal of the Franklin Institute,2000,337(6) : 1696-1703.
  • 2Keel L H, Bhattacharyya S P. Robust, fragile, or optimal [ J ]. IEEE Trans on Automatic Control, 1997,42 ( 8 ) : 1098-1 105.
  • 3Yang Guang-hong, Wang Jian-liang. Non-fragile H∞ control for linear systems with multiplicative controller gain variations [ J ]. Automatica, 2001,37 ( 5 ) :727-737.
  • 4Yang Guang-hong, Wang Jian-liang. Robust non-fragile kalman filtering for uncertain linear systems with estimation gain uncertainty [ J ]. IEEE Transaction on Automatic Control ,2001,46 (2) :343-348.
  • 5Yang Guang-hong, Che Wei-wei. Non-fragile H∞ filter design with additive gain variations [ C ] //Proceedings of 45th IEEE Conference on Decision and Control. San Diego :IEEE,2006:4775-4780.
  • 6王武,郭祥贵,杨富文.线性系统的非脆弱H_∞滤波[J].控制与决策,2008,23(5):503-506. 被引量:7
  • 7Pila A,Shaked U, Souza C. H∞ robust stability of uncertain stochastic differential delay equations filtering for continuous time linear systems with delays [ J ]. IEEE Transaction on Automatic Control, 1999,44 ( 7 ) : 1412- 1417.
  • 8Li Hong, Fu Ming. Linear matrix approach to robust H∞ filtering [ J ]. IEEE Transaction on Signal Processing. 1997,45 (8) :2338-2350.
  • 9Shao Han-yong. Robust H∞ filtering for neutral delay systems [ C ] //Proceedings of 6th World Congress on Intelligent Control and Automation. Dalian: [ s. n. ], 2006: 2165-2170.
  • 10王武,杨富文.不确定时滞系统的时滞依赖鲁棒非脆弱H_∞控制[J].控制理论与应用,2003,20(3):473-476. 被引量:39

二级参考文献17

  • 1舒伟仁,张庆灵.不确定时滞广义系统的鲁棒非脆弱H_∞控制[J].控制与决策,2005,20(6):629-633. 被引量:19
  • 2KOKAME H, KOBAYASHI H, MORI T. Robust H∞ performance for linear delay-differential systems with time-varying uncertainties[J]. IEEE, Trans on Automatic Control, 1998,43(2) :223- 226.
  • 3de SOUZA C E, LI Xi. Delay-dependent robust H∞ control of uncertain linear state-delayed systems [J]. Automatica, 1999,35(9): 1313- 1321.
  • 4CAO Yongyan, SUN Youxian, LAM J. Delay-dependent robust H∞ control for uncertain systems with time-varying delays [ J ]. IEE Proc-Control Theory and Applications, 1998, 145(3) : 338 - 344.
  • 5KEEL L H, BHATTACHARYYA S P. Robust, fragile, or optimal[J]. IEEE Trans on Automatic Control, 1997,42(8) : 1098 - 1105.
  • 6FAMULARO D, DORATO P, ABDALLAH C T, et al. Robust non-fragile LQ controller: the static state feedback case [ J]. Int J Control, 2000,73(2):159- 165.
  • 7YANG Guanghong, WANG Jianliang, LIN Chong. H∞ control for linear systems with additive controller gain variation [J]. Int J Control, 2000,73(16):1500- 1506.
  • 8Palhares R M, Peres P L D. Robust H∞ filter design with pole constraints for discrete-time system[J]. J of the Franklin Institute, 2000, 337(6): 713-723.
  • 9Assawinchaichote W, Nguang S K. H∞ filtering for nonlinear singularly perturbed systems with pole placement constraints: An LMI approach [J]. IEEE Trans on Signal Processing, 2004, 34(6) : 1659-1667.
  • 10Keel L H, Bhattacharyya S P. Robust, fragile, or optimal []]. IEEE Trans on Automatic Control, 1997, 42(8) : 1098-1105.

共引文献44

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部