期刊文献+

传统硅烷分解炉内分解过程的模拟 被引量:4

The Simulation of Silane Pyrolysis in Reactor:Traditional Reactor
下载PDF
导出
摘要 基于硅烷热分解的总体反应模型,利用Fluent软件模拟了钟罩式硅烷分解炉内同时发生的传热、传质和热化学反应过程。模拟结果定量地表述了传统硅烷分解炉内发生的各个过程,借此探讨了分解炉内的气压、硅棒温度和硅烷流量等工艺条件对硅烷热分解沉积硅转化率及能耗等技术指标的影响。指出硅棒温度为700-800℃,炉内压力升高至0.3MPa时,有利于提高硅烷分解率,抑制硅粉的产生和降低能耗。 Based on the global reaction model of silane thermal decomposition, the computational fluid dynamics code FLUENT is adopted to simulate the heat transfer, mass transfer and the thermal chemical process that happened in a traditional silane decomposer. The results quantitatively express the individual process in the decomposer. It is shown that under proper temperature range and a higher pressure, powder formation can be inhibited and a higher yield and a less energy consumption can be obtained. Setting rods temperature between 700-800℃ and arising total pressure to 0. 3MPa can improve silane decomposition rate, restrain powder formation and reduce energy consuming.
出处 《浙江理工大学学报(自然科学版)》 2009年第6期901-905,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
关键词 硅烷 热分解 数值模拟 silane thermal decomposition numerical simulation
  • 相关文献

参考文献16

  • 1李锡华.硅烷分解行为及设备的研究进展[J].材料科学与工程,1991,9(4):9-15. 被引量:1
  • 2Takehiko Furasawa, Toshinori Kojima, Hiroyuki Hiroha. Chemical vapor deposition and homogeneous nucleation in monosilane pyrolysis within interparticle spaces-application of fine formation analysis to fluidized bed CVD[J]. Chemical Engineering Science, 1990, 43: 2527-2534.
  • 3Girshick S L, Swihart M T, Suh S M, et al. Numerical modeling of gas-phase nucleation and particle growth during chemical vapor deposition of Silicon[J]. Journal of the Electrochemical Society, 2000, 147(6): 2303-2311.
  • 4Lai S, Dudukovic P. Fluidized bed reactor modeling for production of silicon by silane pyrolysis[J]. Chemical Engineering, 1986, 41: 633-641.
  • 5Hashimoto K, Miura K, Masuda M, et al. Kinetic analysis of the growth of polycrystalline silicon from silane, using a rod-substrate CVD reactor[J]. American Institute of Chemical Engneering, 1992, 32(2): 360-369.
  • 6White C M, Ege P, Ydstie B E. Size distribution modeling for fluidized bed solar-grade silicon production[J]. Powder Technol, 2006, 163: 51-58.
  • 7Guenther C, Brien T O, Syamlal M. A numerical model of silane pyrolysis in a gas-solids fluidized bed[C]. Fourth International Conference on Multiphase Flow. New Orleans, 2001.
  • 8Reuge N, Cadoret L, Caussat B. Mutifluid eulerian modeling of a silicon fluidized bed chemical vapor deposition process: analysis of various kinetic models[J]. Chemical Engineering Journal, 2009, 148: 506-516.
  • 9Fluent Inc. Fluent 6.1 user guide[J/OL]. (2009-02-20). www. fluentusers.com.
  • 10赵琴.Fluent软件的技术特点及其在暖通空调领域的应用[J].计算机应用,2003,23(z2):424-425. 被引量:20

二级参考文献17

  • 1徐谦,左然,张红.反向流动垂直喷淋式MOCVD反应器设计与数值模拟[J].人工晶体学报,2005,34(6):1059-1064. 被引量:13
  • 2徐谦,左然.反向流动垂直喷淋式MOCVD反应器生长GaN的化学反应数值模拟[J].人工晶体学报,2007,36(2):338-343. 被引量:6
  • 3Hirako A, Ohkawa K. Effect of thermal radiation and absorption in GaN MOVPE growth modeling on temperature distribution and chemical state. Journal of Crystal Growth, 2005, 276:57 -63
  • 4Sengupta D, Mazumder S. Combined ab initio quantum chemistry and computational fluid calculations for prediction of gallium nitride growth. Journal of Crystal Growth, 2005, 279:369 -382
  • 5Parikh R P, Adomaitis R A. An overview of GaN growth chemistry and its effect on reactor design: application to a planetary radial flow CVD system. Journal of Crystal Growth, 2006, 286:259 -278
  • 6Dauelsberg M, Martin C, Protzmann H, Boyd A R. Modeling and process design of Ⅲ-nitride MOVPE at near atmospheric: pressure in close coupled showerhead and planetary reactors. Journal of Crystal Growth, 2007, 298:418-424
  • 7Hirako A, Yoshitani M. GaN MOVPE growth and its microscopic chemistry of gaseous phase by computational thermodynamic analysis. Journal of Crystal Growth,2002, 237:931-935
  • 8Clayton A J, Irvine S C. The kinetics of parasitic growth in GaAs MOVPE. Journal of Crystal Growth, 2007, 300: 277 -283
  • 9Moscatelli Davide, Cawallotti Carlo. Theoretical investigation of the gas phase kinetics active during the GaN MOVPE. J. Phys. Chem. A, 2007, 111:4620 -4631
  • 10Przhevalskii I N, Makarov Yu N. Thermodynamic properties of group Ⅲ nitrides and related species. MRS Internet Journal of Semiconductor Research, 1998, 3: 30- 43

共引文献61

同被引文献52

  • 1涂善东,张红,庄骏.热管设备的强度与寿命[J].压力容器,1997,14(2):30-37. 被引量:5
  • 2钱家麟.管式加热炉[M].北京:中国石化出版社,2005.
  • 3Hashimoto K, Miura K, Masuda M, et al. Kinetic analysis of the growth of polycrystalline silicon from silane, using a rod-substrate CVDreactor[J].AmericanlnstituteofChemicalEngneering, 1992, 32 (2): 360-369.
  • 4Kenji Hashimoto, Kouichi Miura, Takao Masuda, et al. Growth kinetics of polycrystalline silicon from silane by thermal chemical vapor deposition method[J]. J. Electrochem. Soc., 1990, 137 (3): 1000-1007.
  • 5Sridhar K Iya. Production of ultra-high-purity polycrsytalline silicon[J]. Journal of Crystal Growth, 1986, 75: 85-90.
  • 6Takehiko Furasawa, Toshinori Kojima, Hiroyuki Hiroha. Chemical vapor deposition and homogeneous nucleation in monosilane pyrolysis within interparticle spaces application of fine formation analysis to fluidized bed CVD[J]. Chemical Engineering Science, 1990, 43: 2527-2534.
  • 7Lai S, Dudukovic P. Fluidized bed reactor modeling for production of silicon by silane pyrolysis[J]. Chemical Engineering, 1986, 41: 633-641.
  • 8Filtvedt Wemer O, Mongstad Trygve, Holt Arve, et al. Production of silicon from Sill4 in a fluidized bed[J]. Operation and Results' International Journal of Chemical Reactor Engineering, 2013, 11 (1): 1-12.
  • 9Rogers L O. Handbook of Semiconductor Silicon Technology[M]. New Jersey: Noyes Publications, 1990: 75-81.
  • 10Mapping the silicon world[C]//2nd Solar Silicon Conference, 2005.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部