期刊文献+

利用AMSR-E被动微波数据反演地表温度的神经网络算法 被引量:11

A neural network method for retrieving land-surface temperature from AMSR-E data
下载PDF
导出
摘要 结合对地观测卫星AQUA多传感器/多分辨率的特点,研究了利用AMSR-E被动微波数据反演地表温度的神经网络算法。MODIS地表温度(LST)产品被作为地表温度实测数据,对应的平均温度被用作对应AMSR-E像元的实际地表温度,从而克服由于AMSR-E像元尺度太大和云的影响而难以获得地表实测数据的难点。反演结果分析表明,利用神经网络能够精确地由AMSR-E数据反演地表温度。当使用5个频率10个通道反演时,反演精度最高,说明使用更多的通道能更好地消除土壤水分、粗糙度、大气和其它因素的影响。相对于MODIS温度产品,用此算法反演的平均误差约低于2K。 This paper utilizes the characteristic of multiple-sensor/multiple-resolution of the AQUA (an earth observing satellite) and the neural network to retrieve land surface temperature from the AMSR-E data. The MODIS land surface temperature (LST) product is made as the ground data, and the average value of part MODIS pixels in an AMSR-E pixel can be used to overcome the influence of cloud. The retrieval result and analysis indicate that the neural network can be used to accurately retrieve land surface temperature from AMSR-E data. The accuracy is the highest when five frequencies (ten channels) are used, which shows that using more channels can better eliminate the influence of soil moisture, roughness, atmosphere and other influence factors. The average land surface temperature error is under 2 K relative to the MODIS LST product.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第11期1195-1200,共6页 Chinese High Technology Letters
基金 国家自然科学基金(40930101) 973计划(2007CB714403) 中央级公益性科研院所基本科研业务费资助项目
关键词 地表温度(LST) 神经网络(NN) AMSR-E MODIS land surface temperature (LST), neural network (NN), AMSR-E, MODIS
  • 相关文献

参考文献7

二级参考文献123

  • 1覃志豪,LI Wenjuan,ZHANG Minghua,Arnon Karnieli,Pedro Berliner.单窗算法的大气参数估计方法[J].国土资源遥感,2003,15(2):37-43. 被引量:357
  • 2覃志豪,李文娟,徐斌,陈仲新,刘佳.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,16(3):28-32. 被引量:517
  • 3Li Z, Becker F. Feasibility of Land Surface Temperature and Emissivity Determination from AVHRR Data. Remote Sensing of Environment, 1993(43):67~85.
  • 4Qin Z, Karnieli A. Progress in the Remote Sensing of Land Surface Temperature and Ground Emissivity Using NOAA-AVHRR Data. Int. J. Remote Sens. ,1999(20): 2 367~2 393.
  • 5Barton I J, Zavody A M, Orien D M. Theoretical Algorithms for Satellite-Devised Sea Surface Temperatures. J. Geophys. Res. ,1989(93):3 365~3 375.
  • 6Harris A R, Mason I M. An Extension to the SplitWindow Technique Giving Improved Atmospheric Correction and to Total Water Vapor. Int. J. Remote Sens. , 1992(5):881~892.
  • 7Sobrio J A, Li L Z, Stoll M P. Impact of the Atmospheric Transmittance and Total Water Vapor Content in the Algorithms for Estimating Satellite Sea Surface Temperature. IEEE Trans. on Geosci. Remote Sens. , 1993(31):946~952.
  • 8Price J C. Land Surface Temperature Measurements form the Split Window Channels of the NOAA7 Advance Very High Resolution Radiometer. J. Geophys.Res. , 1984(89):7 231~7 237.
  • 9Ottl C, Stoll M. Effect of Atmosphere Absorption and Surface Emissivity on the Determination Land Temperature from Infrared Satellite Data. Int. J. Remote Sens. ,1993(10):2 025~2 037.
  • 10Qin Z H, Arnon Karnieli G D O. Derivation of Split Window Algorithm AVHRR Data. Journal of Geophysical Research, 2001(106): 22 655~22 670.

共引文献212

同被引文献70

引证文献11

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部