期刊文献+

拟线性椭圆型方程Dirichlet问题非平凡弱解的存在性 被引量:2

The Existence of Nontrivial Weak Solution of the Dirichlet Problem for Quasilinear Elliptic Equations
下载PDF
导出
摘要 研究了一类具有非光滑泛函的拟线性椭圆型方程的渐近线性问题.利用非光滑泛函的临界点理论,采用截断函数法并结合弱解的意义,证明了这一类与非光滑泛函相对应的Euler-Lagrange方程当其右端项f(x,t)关于t在无穷远处渐近线性时非平凡弱解的存在性. In this paper the problem of asymptotically linearity for quasilinear elliptic equations corresponding to the nonsmooth functional is studied. By applying the critical point theory of the nonsmooth functional, truncation function method and the definition of weak solution, the existence of nontivial weak solution of the Dirichlet problem for the quasilinear elliptic equation is proved when the right hand member f( x ,t) is asymptotically linear in t at infinity.
作者 廖为 蒲志林
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期763-767,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅自然科学青年基金(07ZB110)资助项目
关键词 非光滑泛函 DIRICHLET问题 渐近线性 弱解 Nonsmooth functional Dirichlet problem Asymptotically linear Weak solution
  • 相关文献

参考文献13

  • 1Ambrosetti A, Rabinowitz P. Dual variational methods in critical points theory and applications[J]. J Funct Anal,1973,14:349-381.
  • 2Costa D, Magalhaes C. Variational eUiptic problems which are nonquadrotic at infinity[ J ]. Nonl Anal, 1994,23:1401-1412.
  • 3Stuart C, Zhou H S. Communications in Partial Differential Equations, 1999,24 : 1731-1758.
  • 4周焕松.一个山路引理的应用[J].数学学报(中文版),2004,47(1):189-196. 被引量:7
  • 5廖为,蒲志林.一类拟线性椭圆型方程Dirichlet问题正解的存在性[J].四川师范大学学报(自然科学版),2007,30(1):31-35. 被引量:7
  • 6黄欣,蒲志林,罗天琦.山路引理在一类渐近线性椭圆方程中的应用[J].四川师范大学学报(自然科学版),2008,31(2):145-149. 被引量:2
  • 7Chang K C. J Math Anal Appl,1981,80:102-129.
  • 8Degiovanni M, Marzocchi M. A critical point theory for nonsmooth functional[ J ]. Ann Mat Puru Appl, 1994,167 (4) :73-100.
  • 9Corvellec J N, Degiovanni M, M arzocchi M. Topoi Methods Nonlinear Anal, 1993,1 : 151-171.
  • 10Areoya D, Boeeardo L. Arch Rat Meth Anal,1996,134:249-274.

二级参考文献44

  • 1廖为,蒲志林.一类缺乏紧性的p-Laplacian方程非平凡弱解的存在性[J].四川师范大学学报(自然科学版),2006,29(1):26-29. 被引量:12
  • 2廖为,蒲志林.一类拟线性椭圆型方程Dirichlet问题正解的存在性[J].四川师范大学学报(自然科学版),2007,30(1):31-35. 被引量:7
  • 3Chang K. C., Critical point theory and applications, Shanghai: Shanghai Science and Technology Press, 1986(in Chinese).
  • 4Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear elliptic equations, New York: Academic Press,1968.
  • 5Ambrosetti A., Rabinowitz P. H., Dual variational method in critical point theory and applications, J. Functional Anal.. 1973. 14: 349-381.
  • 6Shen Y. T., The nontrivial solution of quasilinear elliptic equation in Wo^ 1 ,P(ω), Scientia Sinica, Ser. A, 1984,27: 720-730.
  • 7Shen Y. T., Guo X. K., On the existence of infinity many critical points of the even functional ∫Ω ^F(x, u, Du)dx in Wo^ 1,P(Ω), Acta Math. Sci., 1987, 7(2): 187-195.
  • 8Chang K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 1981, 80: 102-129.
  • 9Degiovanni M., Marzocchi M., A critical point theory for nonsmooth functional , Ann. Mat. Puru. Appl.,1994, 167(4): 73-100.
  • 10Corvellec J. N., Degiovanni M. and Marzocchi M., Deformation properties of continuous functionals and critical point theory, Topol. Methods Nonlinear Anal., 1993, 1: 151-171.

共引文献12

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部