摘要
研究了一类具有非光滑泛函的拟线性椭圆型方程的渐近线性问题.利用非光滑泛函的临界点理论,采用截断函数法并结合弱解的意义,证明了这一类与非光滑泛函相对应的Euler-Lagrange方程当其右端项f(x,t)关于t在无穷远处渐近线性时非平凡弱解的存在性.
In this paper the problem of asymptotically linearity for quasilinear elliptic equations corresponding to the nonsmooth functional is studied. By applying the critical point theory of the nonsmooth functional, truncation function method and the definition of weak solution, the existence of nontivial weak solution of the Dirichlet problem for the quasilinear elliptic equation is proved when the right hand member f( x ,t) is asymptotically linear in t at infinity.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第6期763-767,共5页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学青年基金(07ZB110)资助项目