期刊文献+

基于粒子群优化的项聚类推荐算法 被引量:6

Item Clustering Recommendation Algorithm Based on Particle Swarm Optimization
下载PDF
导出
摘要 针对传统推荐算法的数据稀疏性问题和推荐准确性问题,提出基于粒子群优化的项聚类推荐算法。采用粒子群优化算法产生聚类中心,在此基础上搜索目标项目的最近邻居,并产生推荐,从而提高了传统聚类算法的推荐准确性及响应速度。实验表明改进的项聚类协同过滤算法能有效提高推荐精度。 Aiming at the problems that the data are sparse and the results are not accurate in traditional recommendation algorithms, this paper proposes an item clustering recommendation algorithm based on Particle Swarm Optimization(PSO) algorithm. It uses PSO to engender the cluster centers, calculates the similarity between target item and cluster centers to search the nearest neighbors of target item, and gains a recommendation, so that it improves the accuracy and the real-time performance. Experimental results indicate that the algorithm can effectively improve the accuracy of the recommendation system.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第23期178-180,共3页 Computer Engineering
基金 教育部留学回国人员启动基金资助项目(教外司留[2007]1108-10)
关键词 粒子群优化 项聚类 协同过滤 推荐算法 Particle Swarm Optimization(PSO) item clustering collaborative filtering recommendation algorithm
  • 相关文献

参考文献6

  • 1Breese J, Hecherman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]//Proceedings of UAI'98. [S. l.]: ACM Press, 1998: 43-52.
  • 2Kennedy J, Eberhard R C, Shi Yuhui. Swarm Intelligence[M]. San Francisco, USA: Moraga Kaufman Publisher, 2001: 1942-1948.
  • 3Herlocker J. Clustering Items for Collaborative Filtering[C]// Proceedings of the ACM SIGIR Workshop on Recommender Systems. [S. l.]: ACM Press, 2002.
  • 4刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26
  • 5Sarwar B, Karypis G, Konstanz J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]//Proceedings of the 10th International World Wide Web Conference. New York, USA: ACM Press. 2001.
  • 6邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147

二级参考文献27

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献171

同被引文献53

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 3刘林,蔚成建.基于粒子群算法的房产推荐系统[J].计算机工程与应用,2005,41(29):215-217. 被引量:2
  • 4左孝陵,李为监,刘永才等.离散数学[M].上海:上海科学技术文献出版社,2003:280-286.
  • 5Goldberg D,Nichols D.Using Collaborative Filtering to Weave an Information Tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 6Hedocker J.Clutering Items for Collaborative Filtering[C]//Proceedings of the ACM SIGIR Workshop on Recommender Systems.[S.10.]:ACM Press,2002.
  • 7Hart Seng-Chee.RecTree:A Linear Collaborative Filtering Algorithm[D].British Columbia,Canada:Simon Fraser University,2000.
  • 8Davies D L,Bouldin D W.A Cluster Separation Measure[J].IEEE Trims.on Pattern Anal.and Machine Intell.,1979,1(4):224-227.
  • 9Schafer J,Frankowski D,Herlocker J,et al.Collaborative Filtering Recommender Systems[M].Heidelberg,Germany:[s.n] ,2007.
  • 10Massa P,Avesani P Trust-aware Recommender Systems[C] //Proc.of the 2007 ACM Conference on Recommender Systems.Minneapolis,USA:[s.n.] ,2007.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部