期刊文献+

基于支持向量机的机床故障诊断研究 被引量:1

Research on Machine Fault Based on Support Vector Machine
下载PDF
导出
摘要 介绍了机械故障诊断的历史、意义及研究现状,分析了现有故障诊断理论方法的优点及不足之处;简要介绍了统计学习理论和支持向量机,探讨了适合故障诊断的支持向量机结构;研究了支持向量机的训练方法,目前支持向量机的训练算法是以序贯最小最优化(SMO)为代表的,其中工作集的选择是实现SMO算法的关键;在对实验结果全面分析的基础上,总结出支持向量机在机械故障诊断领域中应用的若干结论。 The thesis introduces the history, the significance and the current research status of machine fault diagnosis. Analyzing the virtue and shortcoming of current fault diagnosis theories, statistical learning theory and support vector machine are briefly introduced. Analysis of the most suitable structures of support vector machine for application to the fault diagnosis is performed. Study on the training algorithm of SVM. Currently, sequential minimal optimization (SVM) algorithm has become the best training algorithm for SVM, working set selection is the key of implementing SMO. Based on the analyzing of the experiment result, summarizing some conclusion of SVM apply in the domain of machine fault diagnosis.
出处 《装备制造技术》 2009年第12期3-5,共3页 Equipment Manufacturing Technology
基金 国家863发展计划资助项目(2008AA04Z407)
关键词 支持向量机 故障诊断 VC维 统计学习理论 support vector machine failure diagnosis VC-dimension statistical learning theory
  • 相关文献

参考文献12

  • 1Sohve .J S. Trouble-shooting to stop vibration of centrifugal [J]. Petro/Chem.Engineer 1968, (11):22-23.
  • 2白木万博[日].机械振动讲演论文集[C].郑州:郑州机械研究所,1984.
  • 3张礼勇,蒋京翔,等.故障诊断技术出国考察报告[M].哈尔滨:机电部哈尔滨电工仪表研究所,1991.
  • 4陈予恕.非线性振动、分叉和混沌理论及其应用[J].振动工程学报,1992,5(3):235-250. 被引量:21
  • 5徐敏,等.设备故障诊断手册[M].西安:西安交通大学出版社,1999.
  • 6李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin. A Study on SMO-type Decomposition Methods for Support Vector Machines [EB/OL],http: //www.csie.ntu.edu.tw/-cjlin/papers/generalSMO.pdf.
  • 8Keerthi S,Shevade S,Bhattcharyya C,et al. Improvements to Platt's SMO algorithm for SVM classifier design [J]. Neural Computation,2001,13 (3): 637-649.
  • 9Platt J. Sequential minimal optimization for SVM[EB/OL]. http://www. ics.uci.edu/- xge/svm/smo.html, 2001.
  • 10Chang Chihchung, Lin Chihjen. LIBSVM: a Library for Support Vector Machines (Version 2.3)[EB/OL]. http://www.csie.ntu.edu.tw/- cjlin/papers/libsvm.pdf, 2001.

共引文献103

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部