摘要
In this paper, by introducing orthogonal space-time coding scheme, the multiuser CDMA systems with different space time codes are given, and corresponding system performance is investigated over Rayleigh fading channel. A low-complexity multiuser receiver scheme is developed for space-time coded CDMA systems. The scheme can make full use of the complex orthogonality of space-time coding to simplify the high decoding complexity of the existing scheme. Compared to the existing scheme with exponential decoding complexity, it has linear decoding complexity. Based on the performance analysis and mathematical calculation, average bit error rate (BER) of the system is derived in detail, and tight closed-form approximation expressions of BER are attained. Simulation results on average BER are in agreement with the theory analysis. The results show that the proposed scheme can achieve almost the same performance as the existing scheme. Moreover, on the condition of same system throughput and concatenation of channel code, the given full-rate space-time coded CDMA system has lower BER than the full-diversity space-time coded CDMA systems.
In this paper, by introducing orthogonal space-time coding scheme, the multiuser CDMA systems with different space time codes are given, and corresponding system performance is investigated over Rayleigh fading channel. A low-complexity multiuser receiver scheme is developed for space-time coded CDMA systems. The scheme can make full use of the complex orthogonality of space-time coding to simplify the high decoding complexity of the existing scheme. Compared to the existing scheme with exponential decoding complexity, it has linear decoding complexity. Based on the performance analysis and mathematical calculation, average bit error rate (BER) of the system is derived in detail, and tight closed-form approximation expressions of BER are attained. Simulation results on average BER are in agreement with the theory analysis. The results show that the proposed scheme can achieve almost the same performance as the existing scheme. Moreover, on the condition of same system throughput and concatenation of channel code, the given full-rate space-time coded CDMA system has lower BER than the full-diversity space-time coded CDMA systems.
基金
Supported by the China Postdoctoral Science Foundation (Grant No. 2005038242)
the open research fund of National Mobile Communications Research Laboratory, Southeast University (Grant No. N200904)
the startup fund of Nanjing University of Aeronautics and Astronautics(Grant No. S0855-041)