期刊文献+

基于神经网络的矿用通风机监测系统建模方法研究 被引量:1

Research Method to Build Modeling of Mine Fan Monitoring System Based on Neural Network
下载PDF
导出
摘要 针对目前煤矿监控水平和现有煤矿监控系统的应用技术,将嵌入式技术应用到煤矿监控系统中,实现矿用通风机的监测。同时,利用神经网络算法建立了矿用通风机监测系统的数学模型,并通过实验的方法验证了使用此方法建立数学模型的正确性,不仅为研究系统的特性做出了铺垫,而且为该方法在复杂系统建模中的应用提供了依据。 According to the present level of coal mine monitoring and the existing application technology of coal mine monitoring system, applying the embed technology in coal mine monitoring system, realizes the mine fan monitoring system. Using neural network builds the modeling of the mine fan monitoring system. And then, validating the method is right though the experiment, which will not only supply the base to research the characteristic of the monitoring system, and also provide the base to build the modeling of the complex systems.
作者 赵亚玲
出处 《煤矿机械》 北大核心 2009年第12期60-63,共4页 Coal Mine Machinery
关键词 通风机 嵌入式系统 神经网络 数学模型 mine fan embed system neural network modeling
  • 相关文献

参考文献2

二级参考文献9

  • 1李阁强,赵克定,袁锐波,张彪.μ理论在电液负载模拟器中的应用[J].航空学报,2007,28(1):228-233. 被引量:20
  • 2王新民,刘卫国.电液伺服加载的神经网络内部反馈控制[J].航空学报,2007,28(3):690-694. 被引量:13
  • 3Yuan Z H, Wu J D, Liu W G. Hybrid control of load simulator for unmanned aerial vehicle based on wavelet networks[C] // Proceedings of the Second International Conference on Machine Learning and Cybernetics. 2003:715-719.
  • 4Li G Q, Cao J, Zhang B, et al. Design of robust controller in electro-hydraulic load simulator[C]// Proceedings of 2006 International Conference on Machine Learning and Cybernetics. 2006: 779-784.
  • 5Wang M Y, Guo B, Guan Y D, et al. Design of electric dynamic load simulator based on recurrent neural networks[J]. IEEE Transaction on Control Systems Technology, 2003, 11(2): 207-210.
  • 6Yoonsu N. QFT force Loop design for the aerodynamic load simulator[J]. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(4): 1384-1392.
  • 7J.C.Prtra,R.N.Pal.A Functional Link Artificial Neural Network for Adaptive Channel Equalization[J].Signal Processing,1995,43(2):181-195.
  • 8J.C.Prtra,G.Panda,R.Baliarsingh.Artificial Neural Network-Based Non-linearity Estimation of Pressure Sensors[J].IEEE Trans.Instru.Meas.,1994,63(6):874-881.
  • 9焦宗夏,华清.电液负载模拟器的RBF神经网络控制[J].机械工程学报,2003,39(1):10-14. 被引量:23

共引文献13

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部